BMAT 160

TEST #1 – FORMULA SHEET

<u>CHAPTER-2</u>: Statistics of One Variable

Sampling Interval = $\frac{Population Size}{Sample Size}$

Median: the middle value when the data are arranged from lowest to highest

Sample Mean, \overline{x} : $\overline{x} = \frac{\sum x}{n}$, where, n = the number of values in a sample

Mode: the most frequent data

Weighted Mean: $\bar{x} = \frac{\sum wx}{\sum w}$, where, w = the weight of the data point x

Sample Variance, v: $v = \frac{\sum (x-\overline{x})^2}{n-1}$

Sample Standard deviation, s: $s = \sqrt{\nu} = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$

First quartile (Q_1) : the median of the lower half of the data

Third quartile (Q_3) : the median of the upper half of the data

Interquartile range = $Q_3 - Q_1$

Semi – interquartile range = $\frac{1}{2}(Q_3 - Q_1)$

CHAPTER- 3: Scatter Plots and Linear Correlation

Correlation Coefficient, $r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{\left[n \sum x^2 - (\sum x)^2\right]\left[n \sum y^2 - (\sum y)^2\right]}}$

Equation of the line of best fit: y = ax + b,

where
$$a = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2}$$
, $b = \overline{y} - a\overline{x}$