BMAT 160

TEST \#1 - FORMULA SHEET

CHAPTER- 2: Statistics of One Variable
Sampling Interval $=\frac{\text { Population Size }}{\text { Sample Size }}$

Median: the middle value when the data are arranged from lowest to highest
Sample Mean, $\bar{x}: \quad \bar{x}=\frac{\sum x}{n}, \quad$ where, $\mathrm{n}=$ the number of values in a sample
Mode: the most frequent data
Weighted Mean: $\bar{x}=\frac{\sum w x}{\sum w}$, where, $\mathrm{w}=$ the weight of the data point x

Sample Variance, $v: \quad v=\frac{\sum(x-\bar{x})^{2}}{n-1}$
Sample Standard deviation, s: $s=\sqrt{v}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

First quartile $\left(\mathbf{Q}_{\mathbf{1}}\right)$: the median of the lower half of the data
Third quartile $\left(\mathbf{Q}_{\mathbf{3}}\right)$: the median of the upper half of the data
Interquartile range $=\mathrm{Q}_{3}-\mathrm{Q}_{1}$
Semi - interquartile range $=1 / 2\left(Q_{3}-Q_{1}\right)$

CHAPTER- 3: Scatter Plots and Linear Correlation

Correlation Coefficient, $r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{2}\right]\left[n \sum y^{2}-\left(\sum y\right)^{2}\right]}}$
Equation of the line of best fit: $\quad y=a x+b$,

$$
\text { where } a=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}}, \quad b=\bar{y}-a \bar{x}
$$

