BMAT 160

TEST #2 – FORMULA SHEET

CHAPTER-4: Permutations and Organized Counting

Permutation:
$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

Combination:
$$_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

CHAPTER- 5: Combinations

Number of Subsets: in a set with n distinct elements including the null set is 2ⁿ

CHAPTER-6: Introduction to Probability

Probability of an event A: $P(A) = \frac{n(A)}{n(S)}$,

where, n(A) = the number of outcomes in which event A can occur and n(S) = the total number of possible outcomes

Complement Events: $P(A) + P(\bar{A}) = 1$ where, \bar{A} is the complement of A.

Odds in favour of $A = \frac{P(A)}{P(\bar{A})}$, Odds against $A = \frac{P(\bar{A})}{P(A)}$

If Odds in favour of $A = \frac{h}{k}$, then $P(A) = \frac{h}{h+k}$

Product Rule: $P(A \text{ and } B) = P(A) \times P(B)$, where A and B are **independent** events

Conditional Probability: $P(A \text{ and } B) = P(A) \times P(B \mid A)$, where B is **dependent** on A

P(B|A), is the probability that event B occurs, given that A has already occurred.

Addition Rule:

P(A or B) = P(A) + P(B), where A and B are **mutually exclusive**

P(A or B) = P(A) + P(B) - P(A and B), where A and B are **non-mutually exclusive**

1