TEST \#2 - FORMULA SHEET

CHAPTER- 4: Permutations and Organized Counting

Permutation: ${ }_{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=\frac{n!}{(n-r)!}$
Combination: ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{(n-r)!r!}$

CHAPTER- 5: Combinations

Number of Subsets: in a set with n distinct elements including the null set is 2^{n}

CHAPTER- 6: Introduction to Probability

Probability of an event A: $\quad \mathrm{P}(\mathrm{A})=\frac{n(A)}{n(S)}$,
where, $n(A)=$ the number of outcomes in which event A can occur and $n(S)=$ the total number of possible outcomes

Complement Events: $\quad \mathrm{P}(\mathrm{A})+\mathrm{P}(\bar{A})=1 \quad$ where, \bar{A} is the complement of A .

Odds in favour of $\mathbf{A}=\frac{P(A)}{P(\bar{A})}, \quad$ Odds against $\mathbf{A}=\frac{P(\bar{A})}{P(A)}$
If Odds in favour of $\mathbf{A}=\frac{\boldsymbol{h}}{\boldsymbol{k}} \quad$, then $\quad \mathrm{P}(\mathrm{A})=\frac{h}{h+\boldsymbol{k}}$

Product Rule: $\quad \mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$, where A and B are independent events
Conditional Probability: $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B} \mid \mathrm{A})$, where B is dependent on A
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})$, is the probability that event B occurs, given thatA has already occurred.

Addition Rule:

$$
\begin{aligned}
& P(A \text { or } B)=P(A)+P(B) \text {, where } A \text { and } B \text { are mutually exclusive } \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \text {, where } A \text { and } B \text { are non-mutually exclusive }
\end{aligned}
$$

