BMAT 160

TEST \#3 - FORMULA SHEET

CHAPTER- 7: Probability Distributions

Expected Value, $\mathbf{E}(\mathbf{X}): \quad \mathrm{E}(\mathrm{X})=\sum[x P(x)]=\mathrm{x}_{1} \cdot P\left(x_{1}\right)+x_{2} \cdot P\left(x_{2}\right)+\cdots+x_{n} \cdot P\left(x_{n}\right)$
where, $\mathrm{x}=$ each outcome, and $\mathrm{p}(\mathrm{x})=$ its corresponding probability
Probability in a Binomial Distribution, $P(x)$: $\quad P(x)={ }_{n} C_{x} \cdot p^{x} \cdot q^{(n-x)}$
where, $p=$ probability of success, and $q=$ probability of a failure. $q=1-p$
Expected Value for a Binomial Distribution, $E(X): \quad E(X)=n p$

CHAPTER- 8: The Normal Distribution

The Empirical Rule for a Normal Distribution:

1. Approximately 68% of all observations fall within one standard deviation of the mean.
2. Approximately 95% of all observations fall within two standard deviations of the mean.
3. Approximately 99.7% of all observations fall within three standard deviations of the mean.

Normal distributions: $\quad \mathrm{z}=\frac{x-\mu}{\sigma}$
where, $\mu=$ the mean of the population , and $\sigma=$ the standard deviation of the population
Confidence Intervals: $\quad \bar{x}-E<\mu<\bar{x}+E$ or $\bar{x}-z \cdot \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+z \cdot \frac{\sigma}{\sqrt{n}}$
where, $\overline{\mathrm{x}}=$ the sample mean, $\sigma=$ the population standard deviation,
$\mathrm{n}=$ the sample size, and $\mathrm{z}=$ is the z value for the desired confidence level
Margin of Error, E: $\quad E=z \cdot \frac{\sigma}{\sqrt{n}}$
Commonly used confidence levels and their z-scores:

Confidence Level	Critical Value, Z_{C}
90%	1.645
95%	1.96
99%	2.576

The minimum Sample Size for a certain margin of error: $\mathrm{n}=\left(\frac{z \sigma}{E}\right)^{2}$

