BMAT 160

TEST #3 – FORMULA SHEET

<u>CHAPTER-7</u>: Probability Distributions

Expected Value, E(X): $E(X) = \sum [x P(x)] = x_1 \cdot P(x_1) + x_2 \cdot P(x_2) + \dots + x_n \cdot P(x_n)$ where, x = each outcome, and p(x) = its corresponding probability **Probability in a Binomial Distribution, P(x):** $P(x) = {}_nC_x \cdot p^x \cdot q^{(n-x)}$

where, p = probability of success, and q = probability of a failure. q = 1 - p

Expected Value for a Binomial Distribution, E(X) : E(X) = np

<u>CHAPTER-8</u>: The Normal Distribution

The Empirical Rule for a Normal Distribution:

- 1. Approximately 68% of all observations fall within one standard deviation of the mean.
- 2. Approximately 95% of all observations fall within two standard deviations of the mean.
- 3. Approximately 99.7% of all observations fall within three standard deviations of the mean.

Normal distributions: $z = \frac{x - \mu}{\sigma}$ where, μ = the mean of the population , and σ = the standard deviation of the population

Confidence Intervals: $\bar{x} - E < \mu < \bar{x} + E$ or $\bar{x} - z \cdot \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z \cdot \frac{\sigma}{\sqrt{n}}$ where, \bar{x} = the sample mean, σ = the population standard deviation, n = the sample size, and z = is the z value for the desired confidence level

Margin of Error, E : $E = z \cdot \frac{\sigma}{\sqrt{n}}$

Commonly used confidence levels and their z-scores:

Confidence Level	Critical Value, Z _C
90%	1.645
95%	1.96
99%	2.576

The minimum Sample Size for a certain margin of error: $n = \left(\frac{z\sigma}{E}\right)^2$