BSTA 320 – COMPREHENSIVE EXAM FORMULA SHEET

Decision Under Uncertainty

Maximax Maximin Equally Likely (Laplace) Criterion of Realism (Hurwicz): $\alpha \times$ (best payoff for an alternative) + $(1 - \alpha) \times$ (worst payoff for the alternative) Minimax Regret

Decision Making Under Risk

(Outcomes are also known as States of Nature)

Expected Monetary Value

EMV = (payoff of first outcome) × (probability of first outcome)

- + (payoff of second outcome) × (probability of second outcome)
- +... + (payoff of last outcome) \times (probability of last outcome)

Expected Opportunity Loss

EOL = (regret of first outcome) × (probability of first outcome)

- + (regret of second outcome) × (probability of second outcome)
- +... + (regret of last outcome) \times (probability of last outcome)

Expected Value with Perfect Information

 $EVwPI = (best payoff of the first outcome) \times (probability of first outcome)$

- + (best payoff of the second outcome) × (probability of second outcome)
- +... + (best payoff of the last outcome) \times (probability of last outcome)

Expected Value of Perfect Information

EVPI = EVwPI - Max EMV

Max EMV: The expected value without information.

Decision Making with Sample Information

Expected Value of Sample Information

= EVwSI - Max EMV

Efficiency =
$$\frac{EVSI}{EVPI}$$

Table: Computation of Posterior Probabilities

(1) Outcome	(2) Prior Probabilities	(3) Conditional Probabilities	(4) Joint Probabilities (2) x (3)	(5) Posterior Probabilities (4) $/\Sigma(4)$

BAYES' THEOREM (for calculation of Posterior Probabilities)

The probability of event B_i given that event A has occurred is given by the formula

$$P(B_{i}|A) = \frac{P(B_{i})P(A|B_{i})}{P(B_{1})P(A|B_{1}) + P(B_{2})P(A|B_{2}) + \dots + P(B_{k})P(A|B_{k})}$$

where B_1, B_2, \dots, B_k are **mutually exclusive** and **collectively exhaustive** events.

Control Charts

<i>R</i> chart	\overline{x} chart
UCL = $\overline{R} D_4$ LCL = $\overline{R} D_3$ where $\overline{R} = \frac{\sum R}{k}$ k= number of sub groups sampled	UCL = $\overline{\overline{x}} + A_2 \overline{R}$ LCL = $\overline{\overline{x}} - A_2 \overline{R}$ where $\overline{\overline{x}} = \frac{\sum \overline{x}}{k}$

<i>p</i> chart	c chart	
Control Limits: $\overline{p} \pm 3\sqrt{\frac{(\overline{p})(\overline{q})}{\overline{n}}}$	Control Limits: $\overline{c} \pm 3\sqrt{\overline{c}}$	
where $\overline{p} = \frac{\sum x}{\sum n}$, $\overline{q} = 1 - \overline{p}$, $\overline{n} = \frac{\sum n}{k}$ where k = number of subgroups sampled	where $\overline{c} = \frac{\sum c}{k}$ c = number of occurrences and k = number of units sampled	

TABLE OF CONTROL CHART CONSTANTS							
	CHART FOR		CHART FOR				
	AVERAGES		RANGES				
		x	\overline{R}				
OBSERVATIONS	FACTORS FOR CONTROL LIMITS						
IN SAMPLE, n 2	$\frac{A_2}{1.880}$	A_3 2.659	$\frac{D_3}{0}$	<u> </u>			
2		2.039 1.954	-	2.575			
	1.023		0				
4	0.729	1.628	0	2.282			
5	0.577	1.427	0	2.114			
6	0.483	1.287	0	2.004			
7	0.419	1.182	0.076	1.924			
8	0.373	1.099	0.136	1.864			
9	0.337	1.032	0.184	1.816			
10	0.308	0.975	0.223	1.777			
11	0.285	0.927	0.256	1.744			
12	0.266	0.886	0.283	1.717			
13	0.249	0.850	0.307	1.693			
14	0.235	0.817	0.328	1.672			
15	0.223	0.789	0.347	1.653			
16	0.212	0.763	0.363	1.637			
17	0.203	0.739	0.378	1.622			
18	0.194	0.718	0.391	1.609			
19	0.187	0.698	0.404	1.596			
20	0.180	0.680	0.415	1.585			
21	0.173	0.663	0.425	1.575			
22	0.167	0.647	0.435	1.565			
23	0.162	0.633	0.443	1.557			
24	0.157	0.619	0.452	1.548			
25	0.153	0.606	0.459	1.541			
		, i i i i i i i i i i i i i i i i i i i					

Source: Adapted from Manual on Presentation of Data and Control Chart Analysis, Copyright ©2002 by ASTM International, p. 67

Forecasting

Moving Average

k-period moving average = $\sum (actual value in previous k periods)/k$

Weighted Moving Average

k-period weighted moving average = $\frac{\sum_{i}^{k} (\text{weight for period } i) \times (\text{Actual value in period } i)}{\sum_{i}^{k} (\text{weights})}$

Exponential Smoothing

 $F_{t+1} = F_t + \alpha (A_t - F_t)$ or $F_{t+1} = \alpha A_t + (1 - \alpha) F_t$ where A_t = actual value in period t, F_t = forecast for period t F_{t+1} = forecast for period t +1, α = smoothing constant value ($0 \le \alpha \le 1$)

$$MAD = \sum_{t=1}^{T} | \text{ forecast error } | / T \qquad MAPE = 100 \sum_{t=1}^{T} (| \text{ forecast error } | / A_t) / T$$

Simple Linear Regression

 $\hat{y} = a + b x$ or $\hat{y} = b_0 + b_1 x$

Coefficient of Correlation (**r**) measures the strength of the relationship $(-1 \le r \le 1)$

Coefficient of Determination $(\mathbf{R}^2) = \frac{\text{explained variation}}{\text{total variation}}$ or $\frac{SSR}{SST}$

where SST = SSR + SSE

SST = total sum of squares, SSR = regression sum of squares, SSE = error sum of squares

Standard Error of Estimate (s_e) $s_e = \sqrt{\frac{SSE}{df}}$ or $s_e = \sqrt{\frac{SSE}{n-2}}$

Multiple Regression

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$

Standard Error of Estimate (se) $s_e = \sqrt{\frac{SSE}{df}}$ or $s_e = \sqrt{\frac{SSE}{n - (k + 1)}}$ or $s_e = \sqrt{\frac{\sum (y - \hat{y})^2}{n - (k + 1)}}$
where \hat{y} = predicted y value and y = actual y value

where \hat{y} = predicted y value and y = actual y value df = n- (k + 1) df = degrees of freedom, k = number of independent (x) variables, n= sample size

Coefficient of Determination $(R^2) = \frac{\text{explained variation}}{\text{total variation}}$ or $\frac{SSR}{SST}$

Adjusted $R^2 = 1 - \frac{(n-1)}{[n-(k+1)]} (1-R^2)$

where n = sample size and k = number of independent (x) variables