BSTA 320 - COMPREHENSIVE EXAM FORMULA SHEET

Decision Under Uncertainty

Maximax
Maximin
Equally Likely (Laplace)
Criterion of Realism (Hurwicz):
$\alpha \times$ (best payoff for an alternative) $+(1-\alpha) \times$ (worst payoff for the alternative)
Minimax Regret

Decision Making Under Risk

(Outcomes are also known as States of Nature)

```
Expected Monetary Value
    EMV \(=(\) payoff of first outcome \() \times(\) probability of first outcome \()\)
            + (payoff of second outcome) \(\times\) (probability of second outcome)
            \(+\ldots+\) (payoff of last outcome) \(\times\) (probability of last outcome)
```


Expected Opportunity Loss

EOL $=($ regret of first outcome $) \times($ probability of first outcome $)$

+ (regret of second outcome) \times (probability of second outcome)
$+\ldots+($ regret of last outcome $) \times($ probability of last outcome)

Expected Value with Perfect Information

EVwPI $=$ (best payoff of the first outcome) \times (probability of first outcome)

+ (best payoff of the second outcome) \times (probability of second outcome)
$+\ldots+$ (best payoff of the last outcome) \times (probability of last outcome)

Expected Value of Perfect Information

EVPI = EVwPI - Max EMV
Max EMV: The expected value without information.

Decision Making with Sample Information

Expected Value of Sample Information

$$
\begin{aligned}
\text { EVSI } & =\left(\begin{array}{l}
\text { expected value of best decision } \\
\text { with sample information, } \\
\text { assuming no cost to gather it }
\end{array}\right)-\left(\begin{array}{l}
\text { expected value of } \\
\text { best decision without } \\
\text { sample information }
\end{array}\right) \\
& =\text { EVwSI }- \text { Max EMV }
\end{aligned}
$$

Efficiency $=\frac{E V S I}{E V P I}$

Table: Computation of Posterior Probabilities

(1) Outcome	(2) Prior Probabilities	(3) Conditional Probabilities	(4) Joint $(2) \times(3)$	(5) Probabilities Probabilities $(4) / \sum(4)$

BAYES' THEOREM (for calculation of Posterior Probabilities)

The probability of event B_{i} given that event A has occurred is given by the formula

$$
P\left(B_{\mathrm{i}} \mid A\right)=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{P\left(B_{1}\right) P\left(A \mid B_{1}\right)+P\left(B_{2}\right) P\left(A \mid B_{2}\right)+\cdots+P\left(B_{k}\right) P\left(A \mid B_{k}\right)}
$$

where $B_{1}, B_{2}, \cdots, B_{k}$ are mutually exclusive and collectively exhaustive events.

Control Charts

\boldsymbol{R} chart	\bar{x} chart
$\mathrm{UCL}=\bar{R} D_{4}$	
$\mathrm{LCL}=\bar{R} D_{3}$	$\mathrm{UCL}=\overline{\bar{x}}+A_{2} \bar{R}$
where $\bar{R}=\frac{\sum R}{k}$	LCL $=\overline{\bar{x}}-A_{2} \bar{R}$
$\mathrm{k}=$ number of sub groups sampled	where $\overline{\bar{x}}=\frac{\sum \bar{x}}{k}$

\boldsymbol{p} chart	\boldsymbol{c} chart
Control Limits: $\bar{p} \pm 3 \sqrt{\frac{(\bar{p})(\bar{q})}{\bar{n}}}$	Control Limits: $\bar{c} \pm 3 \sqrt{\bar{c}}$
where $\bar{p}=\frac{\sum x}{\sum n}, \quad \bar{q}=1-\bar{p}, \quad \bar{n}=\frac{\sum n}{k}$	where $\bar{c}=\frac{\sum c}{k}$
where $k=$ number of subgroups sampled	$c=$ number of occurrences and
$k=$ number of units sampled	

Table of Control Chart Constants				
OBSERVATIONSIN SAMPLE, n	CHART FOR AVERAGES \bar{x}		$\begin{gathered} \text { CHART FOR } \\ \text { RANGES } \\ \bar{R} \\ \hline \end{gathered}$	
		CTORS F	trol lin	
	A_{2}	A_{3}	D_{3}	D_{4}
2	1.880	2.659	0	3.267
3	1.023	1.954	0	2.575
4	0.729	1.628	0	2.282
5	0.577	1.427	0	2.114
6	0.483	1.287	0	2.004
7	0.419	1.182	0.076	1.924
8	0.373	1.099	0.136	1.864
9	0.337	1.032	0.184	1.816
10	0.308	0.975	0.223	1.777
11	0.285	0.927	0.256	1.744
12	0.266	0.886	0.283	1.717
13	0.249	0.850	0.307	1.693
14	0.235	0.817	0.328	1.672
15	0.223	0.789	0.347	1.653
16	0.212	0.763	0.363	1.637
17	0.203	0.739	0.378	1.622
18	0.194	0.718	0.391	1.609
19	0.187	0.698	0.404	1.596
20	0.180	0.680	0.415	1.585
21	0.173	0.663	0.425	1.575
22	0.167	0.647	0.435	1.565
23	0.162	0.633	0.443	1.557
24	0.157	0.619	0.452	1.548
25	0.153	0.606	0.459	1.541

Source: Adapted from Manual on Presentation of Data and Control Chart Analysis, Copyright ©2002 by ASTM International, p. 67

Forecasting

Moving Average

k - period moving average $=\sum($ actual value in previous k periods $) / k$

Weighted Moving Average

k-period weighted moving average $=\frac{\sum_{i}^{k}(\text { weight for period } i) \times(\text { Actual value in period } i)}{\sum_{i}^{k}(\text { weights })}$

Exponential Smoothing

$F_{t+1}=F_{t}+\alpha\left(A_{t}-F_{t}\right) \quad$ or $\quad F_{t+1}=\alpha A_{t}+(1-\alpha) F_{t}$
where $\mathrm{A}_{\mathrm{t}}=$ actual value in period $\mathrm{t}, \mathrm{F}_{\mathrm{t}}=$ forecast for period t
$F_{t+1}=$ forecast for period $t+1$,
$\alpha=$ smoothing constant value $(0 \leq \alpha \leq 1)$
$M A D=\sum_{t=1}^{T} \mid$ forecast error \mid / T

$$
M A P E=100 \sum_{t=1}^{T}\left(\mid \text { forecast error } \mid / A_{t}\right) / T
$$

Simple Linear Regression

$\hat{y}=a+b x \quad$ or $\quad \hat{y}=b_{0}+b_{1} x$
Coefficient of Correlation (r) measures the strength of the relationship ($-1 \leq r \leq 1$)
Coefficient of Determination $\left(R^{2}\right)=\frac{\text { explained variation }}{\text { total variation }}$ or $\frac{S S R}{S S T}$
where SST = SSR + SSE
SST = total sum of squares, $\mathrm{SSR}=$ regression sum of squares, $\mathrm{SSE}=$ error sum of squares
Standard Error of Estimate $\left(s_{e}\right) \quad s_{\mathrm{e}}=\sqrt{\frac{S S E}{d f}}$ or $s_{\mathrm{e}}=\sqrt{\frac{S S E}{n-2}}$

Multiple Regression

$\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{k} x_{k}$
Standard Error of Estimate $\left(\mathbf{s}_{\mathrm{e}}\right) \quad s_{\mathrm{e}}=\sqrt{\frac{S S E}{d f}}$ or $s_{\mathrm{e}}=\sqrt{\frac{S S E}{n-(k+1)}}$ or $s_{e}=\sqrt{\frac{\sum(y-\hat{y})^{2}}{n-(k+1)}}$
where $\hat{y}=$ predicted y value and $\mathrm{y}=$ actual y value
$\mathrm{df}=\mathrm{n}-(\mathrm{k}+1)$
$\mathrm{df}=$ degrees of freedom, $\mathrm{k}=$ number of independent (x) variables, $\mathrm{n}=$ sample size
Coefficient of Determination $\left(R^{2}\right)=\frac{\text { explained variation }}{\text { total variation }}$ or $\frac{S S R}{S S T}$
Adjusted $\boldsymbol{R}^{2}=1-\frac{(n-1)}{[n-(k+1)]}\left(1-R^{2}\right)$
where $n=$ sample size and $k=$ number of independent (x) variables

