BSTA 320 - TEST 1 FORMULA SHEET

Decision Under Uncertainty

Maximax
Maximin
Equally Likely (Laplace)
Criterion of Realism (Hurwicz):
$\alpha \times$ (best payoff for an alternative) $+(1-\alpha) \times$ (worst payoff for the alternative)
Minimax Regret

Decision Making Under Risk

(Outcomes are also known as States of Nature)

```
Expected Monetary Value
    EMV \(=(\) payoff of first outcome \() \times(\) probability of first outcome \()\)
            + (payoff of second outcome) \(\times\) (probability of second outcome)
            \(+\ldots+\) (payoff of last outcome) \(\times\) (probability of last outcome)
```


Expected Opportunity Loss

EOL $=($ regret of first outcome $) \times($ probability of first outcome $)$

+ (regret of second outcome) \times (probability of second outcome)
$+\ldots+($ regret of last outcome $) \times($ probability of last outcome)

Expected Value with Perfect Information

EVwPI $=$ (best payoff of the first outcome) \times (probability of first outcome)

+ (best payoff of the second outcome) \times (probability of second outcome)
$+\ldots+$ (best payoff of the last outcome) \times (probability of last outcome)

Expected Value of Perfect Information

EVPI = EVwPI - Max EMV
Max EMV: The expected value without information.

Decision Making with Sample Information

Expected Value of Sample Information

$$
\begin{aligned}
\text { EVSI } & =\left(\begin{array}{l}
\text { expected value of best decision } \\
\text { with sample information, } \\
\text { assuming no cost to gather it }
\end{array}\right)-\left(\begin{array}{l}
\text { expected value of } \\
\text { best decision without } \\
\text { sample information }
\end{array}\right) \\
& =\text { EVWSI }- \text { Max EMV }
\end{aligned}
$$

Efficiency $=\frac{E V S I}{E V P I}$

Table: Computation of Posterior Probabilities

(1) Outcome	(2) Prior Probabilities	(3) Conditional Probabilities	(4) Joint Probabilities $(2) \times(3)$	(5) Posterior Probabilities $(4) / \sum(4)$

BAYES' THEOREM (for calculation of Posterior Probabilities)

The probability of event B_{i} given that event A has occurred is given by the formula

$$
P\left(B_{\mathrm{i}} \mid A\right)=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{P\left(B_{1}\right) P\left(A \mid B_{1}\right)+P\left(B_{2}\right) P\left(A \mid B_{2}\right)+\cdots+P\left(B_{k}\right) P\left(A \mid B_{k}\right)}
$$

where $B_{1}, B_{2}, \cdots, B_{k}$ are mutually exclusive and collectively exhaustive events.

