BSTA 325 – TEST 3 FORMULA SHEET

Forecasting

Moving Average

k-period moving average = \sum (actual value in previous k periods)/k

Weighted Moving Average

$$k$$
-period weighted moving average =
$$\frac{\sum_{i}^{k} (\text{weight for period } i) \times (\text{Actual value in period } i)}{\sum_{i}^{k} (\text{weights})}$$

Exponential Smoothing

$$F_{t+1} = F_t + \alpha (A_t - F_t)$$
 or $F_{t+1} = \alpha A_t + (1 - \alpha) F_t$

where A_t = actual value in period t, F_t = forecast for period t

 F_{t+1} = forecast for period t+1, α = smoothing constant value ($0 \le \alpha \le 1$)

$$MAD = \sum_{t=1}^{T} ||forecast|| ||forecast|$$

Centred Average:

Centred average for quarter $t = [0.5 \times \text{sales in quarter } t - 2 + \text{sales in quarter } t - 1 + \text{sales in quarter } t + \text{sales in quarter } t + 1 + 0.5 \times \text{sales in quarter } t + 2]/4$

Seasonal Ratio:

$$Seasonal\ Ratio = \frac{Actual\ value}{Centred\ moving\ average}$$

Unnormalized Seasonal Index:

Unnormalized Seasonal Index for quarter t = Average of all Seasonal Ratios for quarter t

Normalized Seasonal Index:

Normalized Seasonal Index for quarter t = Unnormalized Seasonal Index for quarter t / Sum of all Unnormalized Seasonal Indices

Multiple Regression

 $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + ... + b_k x_k$ (general form of the estimate multiple regression equation) $n = \text{sample size}, \quad k = \text{number of independent (x) variables}$

ANOVA				
	df	SS	MS	F
Regression	k	SSR	MSR = SSR/k	MSR/MSE
Residual (Error)	n-k-1	SSE	MSE = SSE/(n-k-1)	
Total	n-1	SST		

Coefficient of Determination
$$(R^2) = \frac{\text{explained variation}}{\text{total variation}} \text{ or } \frac{SSR}{SST}$$

Adjusted
$$R^2 = 1 - \frac{(n-1)}{(n-(k+1))} (1-R^2)$$

Standard Error of Estimate
$$(s_e)$$
 $s_e = \sqrt{\frac{SSE}{n-k-1}}$ or $s_e = \sqrt{\frac{\sum (y-\hat{y})^2}{n-k-1}}$

Total Variation
$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

Explained Variation
$$SSR = \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}$$

Unexplained Variation
$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where $\hat{y} = \text{predicted y value and y} = \text{actual y value}$

$$SSR + SSE = SST$$

$$t\text{-stat} = \frac{regression\ coefficient\ (b_i)}{standard\ error\ of\ b_i}$$

Confidence Limits = regression coefficient (b_i) ± standard error of $b_i \times t_{\alpha/2}$ (df = n-k-1)