CALC 103

TEST 2 FORMULA SHEET

Derivatives:

$$
\begin{aligned}
& * \frac{d}{d x}[C]=0 \quad C=\text { constant } \quad * \frac{d}{d x}[k x+C]=k \quad k \text { and } C \text { are constants } \\
& \text { * } \frac{d}{d x}\left[c x^{n}\right]=c n x^{n-1} \text { (Power of } x \text { Rule) } * \frac{d}{d x}\left[c u^{n}\right]=c n u^{n-1} \frac{d u}{d x}=c n u^{n-1} \cdot u^{\prime} \quad \text { (Power of a Function of } x \text { Rule) } \\
& * \frac{d}{d x}[u+v]=u^{\prime}+v^{\prime} \text { (Sum Rule) } \quad * \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \quad \text { (Chain Rule) } \\
& \text { * } \frac{d}{d x}[u v]=\frac{d u}{d x} v+\frac{d v}{d x} u=u^{\prime} v+u v^{\prime} \text { (Product Rule) } \\
& * \frac{d}{d x}\left[\frac{u}{v}\right]=\frac{\frac{d u}{d x} v-\frac{d v}{d x} u}{v^{2}}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \text { (Quotient Rule) } \\
& * \frac{d}{d x}[\sin u]=\cos u \cdot \frac{d u}{d x} \quad * \frac{d}{d x}[\cos u]=-\sin u \cdot \frac{d u}{d x} \quad * \frac{d}{d x}[\tan u]=\sec ^{2} u \cdot \frac{d u}{d x} \\
& * \frac{d}{d x}[\sec u]=\sec u \tan u \cdot \frac{d u}{d x} \quad * \frac{d}{d x}[\csc u]=-\csc u \cot u \cdot \frac{d u}{d x} \quad * \frac{d}{d x}[\cot u]=-\csc ^{2} u \cdot \frac{d u}{d x} \\
& * \frac{d}{d x}\left[\log _{b} u\right]=\frac{1}{u \ln b} \cdot \frac{d u}{d x} \quad * \frac{d}{d x}[\ln u]=\frac{1}{u} \cdot \frac{d u}{d x} \\
& \text { *Properties of Logarithm: } \\
& * \frac{d}{d x}\left[b^{u}\right]=b^{u} \cdot \ln b \cdot \frac{d u}{d x} \quad * \frac{d}{d x}\left[e^{u}\right]=e^{u} \cdot \frac{d u}{d x} \\
& \begin{array}{l}
\log _{b} A B=\log _{b} A+\log _{b} B \\
\log _{b} \frac{A}{B}=\log _{b} A-\log _{b} B \\
\log _{b} A^{P}=P \log _{b} A
\end{array}
\end{aligned}
$$

Integrations:

$$
\begin{array}{ll}
* \int a f(x) d x=a \int f(x) d x & * \int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x \\
* \int d u=u+C & * \int u^{n} d u=\frac{u^{n+1}}{n+1}+C \quad(n \neq-1) \\
* \int \frac{d u}{u}=\ln |u|+C \quad(u \neq 0) &
\end{array}
$$

