

Electrical Formulas

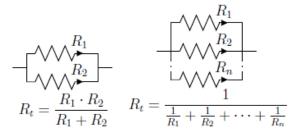
Review Sheet

Meaning of Variables

Meaning	Letter	Unit
Admittance	$Y = \frac{1}{Z}$	Siemens (S)
Capacitance	C	Farads (F)
Capacitive Resistance	X_C	Ohms (Ω)
Charge	Q	Coulombs (C)
Conductance	$G = \frac{1}{R}$	Siemans (S)
Current	I	Amps (A)
Frequency	f	Hertz (Hz)
Impedance	Z	Ohms (Ω)
Inductive Resistance	X_L	Ohms (Ω)
Inductance	L	Henry (H)
Reactance	X	Ohms (Ω)
Resistance	R	Ohms (Ω)
Resistance, Total	R_t	Ohms (Ω)
Susceptance	В	Siemans (S)
Voltage	E	Volts (V)

Circuit Diagrams

Series

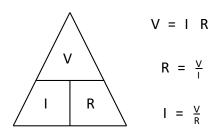

$$- \bigvee_{r} \underbrace{R_1}_{R_1} \bigvee_{r} \underbrace{R_2}_{R_2} \cdots \bigvee_{r} \underbrace{R_n}_{R_n}$$

$$R_t = R_1 + R_2 + \cdots + R_n$$

Kirchhoff's Circuit Laws

Series		
$V_t = V_1 + V_2 + \dots + V_n$		
$I_t = I_1 = I_2 = \dots = I_n$		

Parallel



Parallel		
$V_t = V_1 = V_2 = \dots = V_n$		
$I_t = I_1 + I_2 + \dots + I_n$		

Content in this document was created by Math & Writing Centre tutors with the support of Student Learning Services and the Faculty of Liberal Arts & Sciences at Humber College.

Ohm's Law

Power Formula

$$P = IV = \frac{V^2}{R} = I^2 R = \frac{QV}{t}$$
 , where t is time in seconds.

Reactance and Impedance Formulas

$X = X_L - X_C$	Z = R + jX
$X_C = \frac{1}{2\pi f C}$	$C = \frac{1}{2\pi f X_C}$
$X_L = 2\pi f L$	$L = \frac{X_L}{2\pi f}$

Resonance Frequency Formula

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

Content in this document was created by Math & Writing Centre tutors with the support of Student Learning Services and the Faculty of Liberal Arts & Sciences at Humber College.