Meaning of Variables

Meaning	Letter	Unit
Admittance	$Y=\frac{1}{Z}$	Siemens (S)
Capacitance	C	Farads (F)
Capacitive Resistance	X_{C}	$\operatorname{Ohms}(\Omega)$
Charge	Q	Coulombs (C)
Conductance	$G=\frac{1}{R}$	Siemans (S)
Current	I	$\operatorname{Amps}(\mathrm{~A})$
Frequency	f	$\operatorname{Hertz}(\mathrm{~Hz})$
Impedance	Z	$\operatorname{Ohms}(\Omega)$
Inductive Resistance	X_{L}	$\operatorname{Ohms}(\Omega)$
Inductance	L	$\operatorname{Henry}(\mathrm{H})$
Reactance	X	$\operatorname{Ohms}(\Omega)$
Resistance	R	$\operatorname{Ohms}(\Omega)$
Resistance, Total	R_{t}	$\operatorname{Ohms}(\Omega)$
Susceptance	B	$\operatorname{Siemans}(\mathrm{~S})$
Voltage	E	$\operatorname{Volts}(\mathrm{~V})$

Circuit Diagrams

Series

$R_{t}=R_{1}+R_{2}+\cdots+R_{n}$

Kirchhoff's Circuit Laws

Series
$V_{t}=V_{1}+V_{2}+\cdots+V_{n}$
$I_{t}=I_{1}=I_{2}=\cdots=I_{n}$

Parallel

Parallel
$V_{t}=V_{1}=V_{2}=\cdots=V_{n}$
$I_{t}=I_{1}+I_{2}+\cdots+I_{n}$

$R_{t}=\frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}} \quad R_{t}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}}$
Version with template

Ohm's Law

Power Formula

$P=I V=\frac{V^{2}}{R}=I^{2} R=\frac{Q V}{t}$, where t is time in seconds.

Reactance and Impedance Formulas

$X=X_{L}-X_{C}$	$Z=R+j X$
$X_{C}=\frac{1}{2 \pi f C}$	$C=\frac{1}{2 \pi f X_{C}}$
$X_{L}=2 \pi f L$	$L=\frac{X_{L}}{2 \pi f}$

Resonance Frequency Formula

$$
f_{r}=\frac{1}{2 \pi \sqrt{L C}}
$$

