1 Problems

Round to the nearest tenth.

1) A patient is to receive a fluid challenge of 500 mL of normal saline over 2 hours. The administration set has a drip factor of $155 \mathrm{gtt} / \mathrm{mL}$. What should the drip rate be?
2) A patient is to receive 1 L of lactated Rinder's solution over 10 hours. A set with a drip factor of $10 \mathrm{gtt} / \mathrm{mL}$ is to be used. What should the drip rated be?
3) If a child is to receive $30 \mathrm{~mL} / \mathrm{hr}$ of dextrose 5% in $\frac{1}{4} \mathrm{NS}$ through a minidrip delivery set. What should the drip rate be?
4) If a patient is to receive $100 \mathrm{~mL} /$ hour and the drip factor is $15 \mathrm{gtt} / \mathrm{mL}$, how many drops per minute should the nurse set the administration set to deliver?
5) The doctor orders 1 L of normal saline to run over 8 hours. The drip factor is $20 \mathrm{gtt} / \mathrm{mL}$. After 3 hours, the nurse finds 300 mL remain to be infused. What is the drip rate after recalculation?
6) Calculate the flow rate of 1000 mL to run in over 8 hrs with a set calibrated at $20 \mathrm{gtt} / \mathrm{mL}$.
7) An IV of 1200 mL is ordered to run for 16 hours. Calculate the flow rate if the set is calibrated at $15 \mathrm{gtt} / \mathrm{mL}$?
8) An IV of 500 mL was ordered to infuse in 3 hours using a $15 \mathrm{gtt} / \mathrm{mL}$ set. With $\frac{1}{2}$ hours remaining you discover only 150 mL is left in the bag. At what rate will you need to reset the flow.
9) An IV of 800 mL was started at 9 a.m. to infuse in 4 hours. At 10 a.m. 150 mL have infused. The set is calibrated at $15 \mathrm{gtt} / \mathrm{mL}$. Recalculate the flow rate in $\mathrm{gtt} / \mathrm{min}$.
10) An IV of 1000 mL was scheduled to run in 12 hours. After 4 hours only 220 mL have infused. The set calibration is $20 \mathrm{gtt} / \mathrm{mL}$. Recalculate the rate for the remaining solution.
11) A doctor orders 100 mL of D5NS to infuse at $75 \mathrm{~mL} / \mathrm{hr}$. Calculate how long the infusion is.
12) A patient has an IV of $1000 \mathrm{~mL} 5 \%$ D5W infusing at $90 \mathrm{~mL} / \mathrm{hr}$. How many hours will it take this IV to complete.
13) The doctor orders a volume of 250 mL to be infused at 30 mL per hour. You start the infusion at 12 noon. When will the IV be completed.
Version 1.7
Liberal Arts and Science
14) The medication order is for 500 mL of $5 \% \mathrm{D} / \mathrm{W}$ to infuse in 5 hours.
(a) Calculate the flow rate in drops per minute if the drop factor is 15 drops per mL .
(b) When the nurse later checks the infusion, 400 mL remain to be absorbed in 3 hours. Now you must recalculate the flow rate for the remaining 400 mL
15) The prescriber ordered: $250 \mathrm{~L} 5 \% \mathrm{D} / \mathrm{W}$ IV in 2.5 hr . Calculate the flow rate in mL per hour.
16) The prescriber orders: $2500 \mathrm{~mL} 5 \% \mathrm{D} / \mathrm{W}$ in 24 hr IV. The drop factor is $10 \mathrm{gtt} / \mathrm{mL}$. What is the flow rate?
17) The order reads: $900 \mathrm{~mL} 5 \% \mathrm{D} / 0.45 \%$ NS IV 5hr. Calculate the drip rate when the drop factor is $10 \mathrm{gtt} / \mathrm{mL}$
18) The order reads: $500 \mathrm{~mL} 5 \% \mathrm{D} / \mathrm{W}$ in 4 hr IV. The drop factor is $10 \mathrm{gtt} / \mathrm{mL}$. Calculate the drip rate.
19) The order reads: $1000 \mathrm{~mL} 9 \%$ NS to infuse in 8 hours IV. The flow rate is 21 drops per minute. Four hours later, 400 mL remained in the IV bag. Recalculate the drip rate. The drop factor is $15 \mathrm{gtt} / \mathrm{mL}$.
20) The Physician ordered $500 \mathrm{~mL} \mathrm{D} / 5 / 0.45 \% \mathrm{~N} / \mathrm{S}$ to infuse in 5 hours. One hour later, 300 mL remained. Recalculate the drip rate if the drop factor is $15 \mathrm{gtt} / \mathrm{min}$.

2 Answers/Solutions

1) $645.8 \mathrm{gtt} / \mathrm{min}$
2) $16.6 \mathrm{gtt} / \mathrm{min}$
3) $30 \mathrm{gtt} / \mathrm{min}$
4) $25 \mathrm{gtt} / \mathrm{min}$
5) $20 \mathrm{gtt} / \mathrm{min}$
6) $41.7 \mathrm{gtt} / \mathrm{min}$
7) $18.8 \mathrm{gtt} / \mathrm{min}$
8) $75 \mathrm{gtt} / \mathrm{min}$
9) $54.2 \mathrm{gtt} / \mathrm{min}$
10) $32.5 \mathrm{gtt} / \mathrm{min}$
11) 1 hours 20 minutes
12) 11 hours 7 minutes
13) $8: 20 \mathrm{PM}(8 \mathrm{~h} 20)$
14)

(a) $25 \mathrm{gtt} / \mathrm{min}$
(b) $33.3 \mathrm{gtt} / \mathrm{min}$
15) $100000 \mathrm{~mL} /$ hour
16) $17.4 \mathrm{gtt} / \mathrm{min}$
17) $30 \mathrm{gtt} / \mathrm{min}$
18) $20.8 \mathrm{gtt} / \mathrm{min}$
19) $25 \mathrm{gtt} / \mathrm{min}$
20) $18.8 \mathrm{gtt} / \mathrm{min}$

