\mathbf{P}_{p} is the $p^{\text {th }}$ percentile of the data
\mathbf{L}_{p} is the locator variable for P_{p}
\mathbf{Z} is the size of the data set
$L_{p}=(n+1) \times \frac{p}{100}$ (the location of P_{p} within the data set)

For the ordered data set $\quad 171212151519 \quad n=7$.

Example 1: The $75^{\text {th }}$ percentile, P_{75}, is found as follows:
$L_{75}=(7+1) \times \frac{75}{100}=(8) \times 0.75=6 \quad$ A WHOLE NUMBER
$171212151519 \quad$ Since 15 is the $6^{t h}$ element, then $P_{75}=15$.

Example 2: The $30^{\text {th }}$ percentile, P_{30}, is found as follows:

2.4 is between the $\mathbf{2}^{\text {nd }}$ element and the $3^{\text {rd }}$ element

171212151519

$$
\begin{aligned}
P_{30} & =2^{\text {nd }} \text { element }+\left[0.4 \times\left(3^{r d} \text { element }-\mathbf{2}^{\text {nd }} \text { element }\right)\right] \\
& =7+[(0.4) \times(12-7)] \\
& =7+[0.4 \times(5)] \\
& =7+2 \\
& =9
\end{aligned}
$$

Therefore, $P_{30}=9$.
Version 1.2

Math Centre

Liberal Arts and Science
North Campus: Dan Andreae Math and Writing Centre, LRC 3rd Floor Lakeshore: F201
www.humber.ca/liberalarts/math-centre

