

Calculating Percentiles Statistics

 \boldsymbol{P}_{p} is the p^{th} percentile of the data

 L_p is the locator variable for P_p

 $oldsymbol{n}$ is the size of the data set

 $L_p = (n + 1) \times \frac{p}{100}$ (the location of P_p within the data set)

For the ordered data set 1.7 12 12 15 15 19 n = 7.

Example 1: The 75th percentile, P₇₅, is found as follows:

$$L_{75} = (7 + 1) \times \frac{75}{100} = (8) \times 0.75 = 6$$
 A WHOLE NUMBER

1 7 12 12 15 15 19 Since 15 is the 6^{th} element, then $P_{75} = 15$.

Example 2: The 30th percentile, P₃₀, is found as follows:

$$L_{30} = (7 + 1) \times \frac{30}{100} = (8) \times 0.3 = 2.4 =$$

$$\begin{array}{c}
2 + 0.4 & \underline{A \ DECIMAL \ NUMBER} \\
2^{nd} & 40\% \ of \ the \ way \ from \\
element & the 2^{nd} \ to 3^{rd} \ element
\end{array}$$

2.4 is between the 2nd element and the 3rd element

1 7 12 12 15 15 19

$$P_{30} = 2^{nd}$$
 element + $[0.4 \times (3^{rd})]$ = $7 + [(0.4) \times (12 - 7)]$ = $7 + [0.4 \times (5)]$ = $7 + 2$ = 9

Therefore, $P_{30} = 9$.

HUMBER

Content in this document was created by Math & Writing Centre tutors with the support of Student Learning Services and the Faculty of Liberal Arts & Sciences at Humber College.