1) Order: Solu-Medrol 200 mg IV q6h

Supply: 500 mg vial of powdered Solu-Medrol for IM or IV injection with directions on the left side of the label that state "Reconstitue with $8 m L$ Bacteriostatic Water for Injection with Benzyl Alcohol. When reconstitued as directed each 8 mL contains: Methylprednisolone sodium succinate equivalent to 500 mg methylprednisolone (62.5 mg per mL)."
2) Order: Zithromax 400 mg IV q.d. $\times 2$ days

Supply: 500 mg vial of powedered Zinthromax with directions on the left side of the label as follows "Constitute to $100 \mathrm{mg} / \mathrm{mL}$ with 4.8 mL of Sterile Water for injections."
3) A patient is to receive 3.1 g ticarcillin (Ticar) IVPB. The via label states: "Add 18.5 mL of dilutent for $0.155 \mathrm{~g} / \mathrm{mL}$ solution." How many milliliters should the nurse administer?
4) A patient needs to receive 75 mg of Solu-Medrol I.V. When reconstituted, the twochambered vial contains $125 \mathrm{mg} / 2 \mathrm{~mL}$. How many milliliters should the nurse administer?
5) A patient is to receive 500 mg cefazolin (Kefzol) IVPB. The vial label states: " 1 g Kefzol 3 mL diluent for a final solution of $250 \mathrm{mg} / \mathrm{mL}$. "How many milliliters should the nurse administer?
6) A doctor prescribes methicillin in 2 g IVPB and 1000 mg vials are available. The 1000 mg vial requires 5 mL of diluent and resulting concentraction is $\frac{1 g}{5 m L}$. How many milliliters should the nurse administer?
7) A doctor prescribes Claforan 1 g I.M. q8h. Following the package insert's reconstitution instructions, the nurse adds 3 ml of appropriate diluent. The dosage strength of the reconstituted solution is $300 \mathrm{mg} / \mathrm{ml}$. How many milliliters of the Claforan should the nurse adminster with each dose?

Answers/Solutions

1) Order: Solu-Medrol 200 mg IV q6h

Supply: $6.25 \mathrm{mg} / \mathrm{mL}$
$\frac{D}{H} \times Q=\frac{200 \mathrm{mg}}{62.5 \mathrm{mg}} \times 1 \mathrm{~mL}=3.2 \mathrm{~mL}$
2) Order: Zinthromax 400 mg IV q.d. $\times 2$ days

Supply: $100 \mathrm{mg} / \mathrm{mL}$
$\frac{D}{H} \times Q=\frac{400 \mathrm{mg}}{100 \mathrm{mg}} \times 1 \mathrm{~mL}=4 \mathrm{~mL}$
3) Order: 3.1 g ticarcillin IVBP

Supply: $0.155 \mathrm{~g} / \mathrm{mL}$
$\frac{D}{H} \times Q=\frac{3.1 \mathrm{~g}}{0.55 \mathrm{~g}} \times 1 \mathrm{~mL}=20 \mathrm{~mL}$
4) Order: 75 mg Solu-Medrol I.V.

Supply: $125 \mathrm{mg} / 2 \mathrm{~mL}$
$\frac{D}{H} \times Q=\frac{75 \mathrm{mg}}{125 m g} \times 2 \mathrm{~mL}=1.2 \mathrm{~mL}$
5) Order: 500 mg cefazolin IVPB

Supply: $250 \mathrm{mg} / \mathrm{mL}$
$\frac{D}{H} \times Q=\frac{500 \mathrm{mg}}{250 \mathrm{mg}} \times 1 \mathrm{~mL}=2 \mathrm{~mL}$
6) Order: 2 g methicillin IVPB

Supply: 1000 mg vial requires 5 mL of diluent
$2 \mathrm{~g}=2000 \mathrm{mg}$
$\frac{D}{H} \times Q=\frac{2000 \mathrm{mg}}{1000 \mathrm{mg}} \times 5 \mathrm{~mL}=10 \mathrm{~mL}$
7) Order: 1 g I.M. q8h

Supply: $300 \mathrm{mg} / \mathrm{ml}$
$1 \mathrm{~g}=1000 \mathrm{mg}$
$\frac{D}{H} \times Q=\frac{1000 \mathrm{mg}}{300 \mathrm{mg}} \times 1 \mathrm{~mL}=3.3 \mathrm{ml}$

