FORMULAE \& TABLES FOR STAT 1123 MIDTERM EXAM

Sample mean: $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}, \quad$ Sample standard deviation: $s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$.
Empirical Rule: 68\%: $\bar{X} \pm \mathrm{s}, \quad$ 95\%: $\bar{X} \pm 2 \mathrm{~s}, \quad$ 99.7\%: $\bar{X} \pm 3 \mathrm{~s}$.

Value of specific percentile $\left(\mathbf{P}_{\mathbf{k}}\right) \quad \mathrm{L}_{\mathrm{p}}=(n+1) \frac{p}{100}$
If L is an integer (whole number), the value of percentile P_{p} is at the location L_{p}, counting from the lowest.
If L is not an integer (decimal number), then interpolate between the integer portion of L_{p} and the next value.

Box plot: min, Q_{1}, median, Q_{3}, Max.

Probability: $\mathrm{P}($ event $)=\frac{\text { The number of required outcomes }}{\text { The total number of possible outcomes }}, 0 \leq \mathrm{P}($ event $) \leq 1$
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
$P(A$ or $B)=P(A)+P(B)$ for mutually exclusive events
$P(A$ and $B)=P(A) P(B)$ if A and B are independent $P(A$ and $B)=P(A) P\left(\left.B\right|_{A}\right)$ if A and B are dependent

Conditional probability $P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}$
Total Probability Rule: $P(B)=P(B \mid A) \cdot P(A)+P(B \mid \bar{A}) \cdot P(\bar{A})$.

Normal Distribution:

Use $Z=\frac{x-\mu}{\sigma}$ to convert the non-standard normal distribution to standard normal distribution.
Solve for $x: x=(z \times \sigma)+\mu$.

Regression equation: $\hat{y}=\mathrm{b}_{0}+\mathrm{b}_{1} x$

Z-Table:

TABLEA Percentage of Area under the Normal Curve

Column a gives the distance in standard deviation units from the mean (z). Column b represents the percentage of area between the mean and a given z. Column c represents the percentage at or beyond a given z.

TABLEA (continued)

(a) z	(b) Area between Mean and z	(c) Area beyond z	(a) z	(b) Area between Mean and z	(c) Area beyond z
. 00	. 00	50.00	. 44	17.00	33.00
. 01	. 40	49.60	. 45	17.36	32.64
. 02	. 80	49.20	. 46	17.72	32.28
. 03	1.20	48.80	. 47	18.08	31.92
. 04	1.60	48.40	. 48	18.44	31.56
. 05	1.99	48.01	. 49	18.79	31.21
. 06	2.39	47.61	. 50	19.15	30.85
. 07	2.79	47.21	. 51	19.50	30.50
. 08	3.19	46.81	. 52	19.85	30.15
. 09	3.59	46.41	. 53	20.19	29.81
. 10	3.98	46.02	. 54	20.54	29.46
. 11	4.38	45.62	. 55	20.88	29.12
. 12	4.78	45.22	. 56	21.23	28.77
. 13	5.17	44.83	. 57	21.57	28.43
. 14	5.57	44.43	. 58	21.90	28.10
. 15	5.96	44.04	. 59	22.24	27.76
. 16	6.36	43.64	. 60	22.57	27.43
. 17	6.75	43.25	. 61	22.91	27.09
. 18	7.14	42.86	. 62	23.24	26.76
. 19	7.53	42.47	. 63	23.57	26.43
. 20	7.93	42.07	. 64	23.89	26.11
. 21	8.32	41.68	. 65	24.22	25.78
. 22	8.71	41.29	. 66	24.54	25.46
. 23	9.10	40.90	. 67	24.86	25.14
. 24	9.48	40.52	. 68	25.17	24.83
. 25	9.87	40.13	. 69	25.49	24.51
. 26	10.26	39.74	. 70	25.80	24.20
. 27	10.64	39.36	. 71	26.11	23.89
. 28	11.03	38.97	. 72	26.42	23.58
. 29	11.41	38.59	. 73	26.73	23.27
. 30	11.79	38.21	. 74	27.04	22.96
. 31	12.17	37.83	. 75	27.34	22.66
. 32	12.55	37.45	. 76	27.64	22.36
. 33	12.93	37.07	. 77	27.94	22.06
. 34	13.31	36.69	. 78	28.23	21.77
. 35	13.68	36.32	. 79	28.52	21.48
. 36	14.06	35.94	. 80	28.81	21.19
. 37	14.43	35.57	. 81	29.10	20.90
. 38	14.80	35.20	. 82	29.39	20.61
. 39	15.17	34.83	. 83	29.67	20.33
. 40	15.54	34.46	. 84	29.95	20.05
. 41	15.91	34.09	. 85	30.23	19.77
. 42	16.28	33.72	. 86	30.51	19.49
. 43	16.64	33.36	. 87	30.78	19.22

TABLEA (continued)
$\left.\begin{array}{cccccc}\hline \text { (a) } & \begin{array}{c}\text { (b) } \\ \text { Area between } \\ \text { Mean and } z\end{array} & \begin{array}{c}\text { (c) } \\ \text { Area } \\ \text { beyond } z\end{array} & & \text { (a) } & \begin{array}{c}\text { (b) } \\ \text { Area between } \\ \text { Mean and } z\end{array}\end{array} \begin{array}{c}\text { (c) } \\ \text { Area } \\ \text { beyond } z\end{array}\right]$

TABLEA (continued)

(a) z	(b) Area between Mean and z	(c) Area beyond z	(a) z	(b) Area between Mean and z	(c) Area beyond z
1.76	46.08	3.92	2.20	48.61	1.39
1.77	46.16	3.84	2.21	48.64	1.36
1.78	46.25	3.75	2.22	48.68	1.32
1.79	46.33	3.67	2.23	48.71	1.29
1.80	46.41	3.59	2.24	48.75	1.25
1.81	46.49	3.51	2.25	48.78	1.22
1.82	46.56	3.44	2.26	48.81	1.19
1.83	46.64	3.36	2.27	48.84	1.16
1.84	46.71	3.29	2.28	48.87	1.13
1.85	46.78	3.22	2.29	48.90	1.10
1.86	46.86	3.14	2.30	48.93	1.07
1.87	46.93	3.07 .	2.31	48.96	1.04
1.88	46.99	3.01	2.32	48.98	1.02
1.89	47.06	2.94	2.33	49.01	. 99
1.90	47.13	2.87	2.34	49.04	. 96
1.91	47.19	2.81	2.35	49.06	. 94
1.92	47.26	2.74	2.36	49.09	. 91
1.93	47.32	2.68	2.37	49.11	. 89
1.94	47.38	2.62	2.38	49.13	. 87
1.95	47.44	2.56	2.39	49.16	. 84
1.96	47.50	2.50	2.40	49.18	. 82
1.97	47.56	2.44	2.41	49.20	. 80
1.98	47.61	2.39	2.42	49.22	. 78
1.99	47.67	2.33	2.43	49.25	. 75
2.00	47.72	2.28	2.44	49.27	. 73
2.01	47.78	2.22	2.45	49.29	. 71
2.02	47.83	2.17	2.46	49.31	. 69
2.03	47.88	2.12	2.47	49.32	. 68
2.04	47.93	2.07	2.48	49.34	. 66
2.05	47.98	2.02	2.49	49.36	. 64
2.06	48.03	1.97	2.50	49.38	. 62
2.07	48.08	1.92	2.51	49.40	. 60
2.08	48.12	1.88	2.52	49.41	. 59
2.09	48.17	1.83	2.53	49.43	. 57
2.10	48.21	1.79	2.54	49.45	. 55
2.11	48.26	1.74	2.55	49.46	. 54
2.12	48.30	1.70	2.56	49.48	. 52
2.13	48.34	1.66	2.57	49.49	. 51
2.14	48.38	1.62	2.58	49.51	. 49
2.15	48.42	1.58	2.59	49.52	. 48
2.16	48.46	1.54	2.60	49.53	. 47
2.17	48.50	1.50	2.61	49.55	. 45
2.18	48.54	1.46	2.62	49.56	. 44
2.19	48.57	1.43	2.63	49.57	. 43

TABLEA (continued)
$\left.\begin{array}{cccccc}\hline \text { (a) } & \begin{array}{c}\text { (b) } \\ \text { Area between } \\ \text { Mean and } z\end{array} & \begin{array}{c}\text { (c) } \\ \text { Area } \\ \text { beyond } z\end{array} & & \text { (a) } & \begin{array}{c}\text { (b) } \\ \text { Area between } \\ \text { Mean and } z\end{array}\end{array} \begin{array}{c}\text { (c) } \\ \text { Area } \\ \text { beyond } z\end{array}\right]$

