STAT 2112 Midterm Test Formula Sheet

Criterion of Realism (Hurwicz):

 $\alpha \times (\text{maximum payoff for an alternative}) + (1 - \alpha) \times (\text{minimum payoff for an alternative})$

Expected Monetary Value

EMV = (payoff of first state of nature)×(probability of first state of nature) +

+ (payoff of second state of nature) × (probability of second state of nature) +

+...+ (payoff of last state of nature) × (probability of last state of nature).

Expected Opportunity Loss

EOL = (regret of first state of nature)×(probability of first state of nature)+

+ (regret of second state of nature) × (probability of second state of nature) +

+...+ (regret of last state of nature) × (probability of last state of nature).

Expected Value with Perfect Information

EVwPI = (best payoff of the first state of nature) × (probability of first state of nature) +

+ (best payoff of the second state of nature) × (probability of second state of nature) +

 $+ \ldots + (best payoff of the last state of nature) \times (probability of last state of nature).$

Expected Value of Perfect Information EVPI = EVwPI - Max EMV = EVwPI - EVwoPI

Expected Value of Sample Information

 $\mathbf{EVSI} = \begin{pmatrix} \text{expected value of best decision} \\ \text{with sample information,} \\ \text{assuming no cost to gather it} \end{pmatrix} - \begin{pmatrix} \text{expected value of} \\ \text{best decision without} \\ \text{sample information} \end{pmatrix} =$

= EVwSI – Max EMV = EVwSI – EVwoSI

Efficiency =
$$\frac{EVSI}{EVPI}$$

Table: Computation of Posterior Probabilities

(1)	(2)	(3)	(4)	(5)
States of Nature	Prior	Conditional	Joint	Posterior
	Probabilities	Probabilities	Probabilities	Probabilities
			(2) x (3)	(4) /∑(4)

BAYES' THEOREM (for calculation of Posterior Probabilities)

The probability of event B_i given that event A has occurred is given by the formula

$$P(B_i|_A) = \frac{P(B_i)P(A|_{B_i})}{P(B_1)P(A|_{B_1}) + P(B_2)P(A|_{B_2}) + \dots + P(B_k)P(A|_{B_k})}$$

where B_1, B_2, \dots, B_k are **mutually exclusive** and **collectively exhaustive** events.