STAT 2112 Midterm Test Formula Sheet

Criterion of Realism (Hurwicz):

$\alpha \times($ maximum payoff for an alternative $)+(1-\alpha) \times($ minimum payoff for an alternative $)$

Expected Monetary Value

EMV $=($ payoff of first state of nature $) \times($ probability of first state of nature $)+$ $+($ payoff of second state of nature $) \times($ probability of second state of nature $)+$ $+\ldots+($ payoff of last state of nature $) \times($ probability of last state of nature) .

Expected Opportunity Loss

$$
\begin{aligned}
\mathbf{E O L} & =(\text { regret of first state of nature }) \times(\text { probability of first state of nature })+ \\
& +(\text { regret of second state of nature }) \times(\text { probability of second state of nature })+ \\
& +\ldots+(\text { regret of last state of nature }) \times(\text { probability of last state of nature }) .
\end{aligned}
$$

Expected Value with Perfect Information

$$
\begin{aligned}
\text { EVwPI } & =(\text { best payoff of the first state of nature }) \times(\text { probability of first state of nature })+ \\
& +(\text { best payoff of the second state of nature }) \times(\text { probability of second state of nature })+ \\
& +\ldots+(\text { best payoff of the last state of nature }) \times(\text { probability of last state of nature })
\end{aligned}
$$

Expected Value of Perfect Information

EVPI $=$ EVwPI - Max EMV $=$ EVwPI - EVwoPI

Expected Value of Sample Information

EVSI $=\left(\begin{array}{l}\text { expected value of best decision } \\ \text { with sample information, } \\ \text { assuming no cost to gather it }\end{array}\right)-\left(\begin{array}{l}\text { expected value of } \\ \text { best decision without } \\ \text { sample information }\end{array}\right)=$
$=$ EVwSI - Max EMV $=$ EVwSI - EVwoSI

Efficiency $=\frac{E V S I}{E V P I}$

Table: Computation of Posterior Probabilities

(1)	(2)	(3)	(4)	(5)
States of Nature	Prior			
Probabilities	Conditional	Joint		
Probabilities	Probabilities (2) \times (3)	Probabilities (4) $/ \sum(4)$		

BAYES' THEOREM (for calculation of Posterior Probabilities)

The probability of event B_{i} given that event A has occurred is given by the formula

$$
P\left(\left.B_{i}\right|_{A}\right)=\frac{P\left(B_{i}\right) P\left(\left.A\right|_{B_{i}}\right)}{P\left(B_{1}\right) P\left(\left.A\right|_{B_{1}}\right)+P\left(B_{2}\right) P\left(\left.A\right|_{B_{2}}\right)+\cdots+P\left(B_{k}\right) P\left(\left.A\right|_{B_{k}}\right)}
$$

where $B_{1}, B_{2}, \cdots, B_{k}$ are mutually exclusive and collectively exhaustive events.

