<u>TMTH 104</u> <u>Final Exam Formula Sheet</u>

Chapter 1: Numerical Computation

Distance = Rate × Time Amount = Rate × Base (where Rate is in decimal form) Percent change = $\frac{(\text{new value-original value})}{\text{original value}} \times 100$ Percent efficiency = $\frac{\text{output}}{\text{input}} \times 100$ Percent error = $\frac{(\text{measured value-known value})}{\text{known value}} \times 100$ Percent concentration of ingredient A = $\frac{\text{amount of A}}{\text{total amount of mixture}} \times 100$

Chapter 2: Algebra

 $(a \pm b)^2 = a^2 \pm 2ab + b^2$ $a^2 - b^2 = (a - b)(a + b)$

Given nonzero real numbers x and y, and integers m and :

$$x^{1} = x x^{0} = 1 x^{-n} = \frac{1}{x^{n}}$$
$$(x^{m})^{n} = x^{m \cdot n} x^{m} \cdot x^{n} = x^{m+n} \frac{x^{m}}{x^{n}} = x^{m-n}$$
$$(xy)^{n} = x^{n}y^{n} \left(\frac{x}{y}\right)^{n} = \frac{x^{n}}{y^{n}} \left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^{n}$$

Chapter 5: Graphs

slope $m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$, *y*-intercept = *b*

Equation of line in slope-intercept form: y = mx + b

Chapter 7: Right Triangles

 $1 \ rev = 360^\circ = 2\pi \ rad, \qquad 1^\circ = 60' \ , \qquad 1' = 60'', \qquad 1 \ rad \approx 57.3^\circ$

Given $(x, y) \neq (0, 0)$ on terminal arm of angle θ , let $r = \sqrt{x^2 + y^2}$. Then,

 $\sin(\theta) = \frac{y}{r}$ $\cos(\theta) = \frac{x}{r}$ $\tan(\theta) = \frac{y}{x}$

 $\csc(\theta) = \frac{1}{\sin(\theta)}$ $\sec(\theta) = \frac{1}{\cos(\theta)}$ $\cot(\theta) = \frac{1}{\tan(\theta)}$

$$c^{2} = a^{2} + b^{2}$$
 (Pythagorean Theorem)
 $\sin(\theta) = \frac{\text{opp}}{\text{hyp}}$ $\cos(\theta) = \frac{\text{adj}}{\text{hyp}}$ $\tan(\theta) = \frac{\text{opp}}{\text{adj}}$

Chapter 8: Factoring
$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$
 $a^2 - b^2 = (a - b)(a + b)$

Chapter 9: Fractions
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
 $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$

Chapter 13: Exponents and Radicals

$$\sqrt[n]{a} = a^{1/n} \qquad a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

Given nonzero real numbers x and y, and integers m and n:

$$x^{1} = x x^{0} = 1 x^{-n} = \frac{1}{x^{n}}$$
$$(x^{m})^{n} = x^{m \cdot n} x^{m} \cdot x^{n} = x^{m+n} \frac{x^{m}}{x^{n}} = x^{m-n}$$
$$(xy)^{n} = x^{n}y^{n} \left(\frac{x}{y}\right)^{n} = \frac{x^{n}}{y^{n}} \left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^{n}$$

Chapter 17: Trigonometric Functions

Sine wave as a function of an angle x: $y = a \sin(bx + c)$ amplitude = |a| period = $\frac{360^{\circ}}{b}$ or $\frac{2\pi}{b}$ frequency = $\frac{b}{360^{\circ}}$ or $\frac{b}{2\pi}$ phase angle = c phase shift = $-\frac{c}{b}$

Sine wave as a function of the	<i>me t:</i> $y = a \sin(\omega t + \phi)$	
amplitude = a	angular velocity = ω	period = $\frac{2\pi}{\omega}$
frequency = $\frac{\omega}{2\pi}$	phase angle $= \phi$	phase shift = $-\frac{\phi}{\omega}$
Cosine and Sine Curves Rela	(where ϕ is in radians)	

Chapter 19: Ratio, Proportion, and Variation

Direct Variation:	y = kx	or	$\frac{y_2}{y_1} = \frac{x_2}{x_1}$		
Power Variation:	$y = kx^n$	or	$\frac{y_2}{y_1} = \frac{(x_2)^n}{(x_1)^n}$		
Inverse Variation:	$y = \frac{k}{x}$	or	$\frac{y_2}{y_1} = \frac{x_1}{x_2}$		
Joint Variation: $y = kxw$					

Chapter 20: Exponential and Logarithmic Functions

Growth:	Decay:		Growth to an Upper Limit:
$y = ae^{nt}$	$y = ae^{-nt}$		$y = a(1 - e^{-nt})$
Exponential Form:	$y = b^x$	Logarithmic Form:	$\log_b(y) = x$

Properties of logarithms (where b, M, N > 0, b $\neq 1$, and p is a real number): $\log_b(M \cdot N) = \log_b(M) + \log_b(N)$ $\log_b\left(\frac{M}{N}\right) = \log_b(M) - \log_b(N)$ $\log_b(M^p) = p \cdot \log_b(M)$ $\log_b(1) = 0$ $\log_b(b) = 1$ $\log_b(b^M) = M$ $b^{\log_b(M)} = M$ $\log_b(a) = \frac{\log(a)}{\log(b)} = \frac{\ln(a)}{\ln(b)}$

Common logarithm: $\log(x) = \log_{10}(x)$

Natural logarithm: $\ln(x) = \log_e(x)$, where $e \approx 2.718$