TMTH 105 Final Exam Formula Sheet

Chapter 1: Numerical Computation

Distance = Rate \times Time

Amount = Rate \times Base (where Rate is in decimal form)

Percent change $=\frac{(\text{new value-original value})}{\text{original value}} \times 100$

Percent efficiency = $\frac{\text{output}}{\text{input}} \times 100$

Percent error = $\frac{\text{(measured value-known value)}}{\text{known value}} \times 100$

Percent concentration of ingredient A = $\frac{\text{amount of A}}{\text{total amount of mixture}} \times 100$

Chapter 2: Algebra

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$
 $a^2 - b^2 = (a - b)(a + b)$

$$a^2 - b^2 = (a - b)(a + b)$$

Given nonzero real numbers x and y, and integers m and n:

$$x^1=x$$

$$x^0 = 1$$

$$x^{-n} = \frac{1}{x^n}$$

$$(x^m)^n = x^{m \cdot n}$$

$$x^m \cdot x^n = x^{m+n}$$

$$\frac{x^m}{x^n} = x^{m-n}$$

$$(xy)^n = x^n y^n$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n} \qquad \left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$$

Chapter 5: Graphs

slope
$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$
, y-intercept = b

$$y$$
-intercept = b

Equation of line in slope-intercept form: y = mx + b

Chapter 6: Geometry

2-Dimensional Shape	Formulas
Circle	Circumference = $2\pi r$ or πd
	Area = πr^2 or $\frac{\pi d^2}{4}$
Square	Perimeter = $4s$
	$Area = s^2$
Rectangle	Perimeter = $2(l + w)$
	Area = lw
Parallelogram	Perimeter = $2(a + b)$
	Area = bh
Rhombus	Perimeter = 4s
	Area = sh
Trapezoid	Perimeter = $a + b + c + d$
	$Area = \frac{(a+b)h}{2}$
Triangle	$Area = \frac{bh}{2}$
	or using Hero's Formula, Area = $\sqrt{s(s-a)(s-b)(s-c)}$
	where $s = \frac{a+b+c}{2}$

3-Dimensional Shape	Formulas
Cube	Volume = a^3
	Surface Area = $6a^2$
Rectangular parallelepiped	Volume = lwh
	Surface Area = $2(lw + hw + lh)$
Any cylinder or prism	Volume = (area of base)(altitude)
Right cylinder or prism	Lateral surface area = (perimeter of base)(altitude)
	(not including bases)
Sphere	$Volume = \frac{4}{3}\pi r^3$
	Surface area = $4\pi r^2$
Any cone or pyramid	Volume = $\frac{h}{3}$ (area of base)
Right circular cone or regular pyramid	Lateral surface area = $\frac{s}{2}$ (perimeter of base)
Frustum (any cone or pyramid)	Volume = $\frac{h}{3} (A_1 + A_2 + \sqrt{A_1 A_2})$
Frustum (right circular cone or regular	Lateral surface area
pyramid)	$= \frac{s}{2} (\text{sum of base perimeters}) = \frac{s}{2} (P_1 + P_2)$

Chapter 7: Right Triangles

$$1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}, \qquad 1^{\circ} = 60', \qquad 1' = 60'', \qquad 1 \text{ rad} \approx 57.3^{\circ}$$

$$1^{\circ} = 60'$$
.

$$1' = 60$$
".

$$1 \text{ rad} \approx 57.3^{\circ}$$

Given $(x, y) \neq (0,0)$ on terminal arm of angle θ , let $r = \sqrt{x^2 + y^2}$. Then,

$$\sin(\theta) = \frac{y}{r}$$
 $\cos(\theta) = \frac{x}{r}$ $\tan(\theta) = \frac{y}{r}$

$$\cos(\theta) = \frac{x}{r}$$

$$\tan(\theta) = \frac{y}{x}$$

$$\csc(\theta) = \frac{1}{\sin(\theta)}$$

$$\csc(\theta) = \frac{1}{\sin(\theta)}$$
 $\sec(\theta) = \frac{1}{\cos(\theta)}$ $\cot(\theta) = \frac{1}{\tan(\theta)}$

$$\cot(\theta) = \frac{1}{\tan(\theta)}$$

 $c^2 = a^2 + b^2$ (Pythagorean Theorem)

$$\sin(\theta) = \frac{\text{opp}}{\text{hyp}}$$

$$cos(\theta) = \frac{adj}{hvp}$$
 $tan(\theta) = \frac{opp}{adj}$

$$tan(\theta) = \frac{opp}{adi}$$

Chapter 8: Factoring
$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$
 $a^2 - b^2 = (a - b)(a + b)$

$$a^2 - b^2 = (a - b)(a + b)$$

Chapter 9: Fractions

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
 $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$

 $distance = speed \times time$

 $work\ done = rate\ of\ work \times time$

amount of $flow = flow \ rate \times time$

Chapter 11: Determinants

Second order determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Cramer's Rule:

$$\chi = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$

$$y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$

Chapter 13: Exponents and Radicals

$$\sqrt[n]{a} = a^{1/n}$$
 $a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$

Given nonzero real numbers x and y, and integers m and n:

$$x^1 = x$$
 $x^0 = 1$ $x^{-n} = \frac{1}{x^n}$

$$(x^m)^n = x^{m \cdot n} \qquad \qquad x^m \cdot x^n = x^{m+n} \qquad \qquad \frac{x^m}{x^n} = x^{m-n}$$

$$(xy)^n = x^n y^n$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$$

Chapter 14: Quadratic Equations

Given
$$ax^2 + bx + c = 0$$
, where $a \ne 0$, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (quadratic formula)

Chapter 15: Oblique Triangles and Vectors

$$\sin \theta = \sin(180^{\circ} - \theta)$$
 $\cos \theta = \cos(360^{\circ} - \theta)$ $\tan \theta = \tan(180^{\circ} + \theta)$

Law of Sines:
$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

Law of Cosines:
$$a^2 = b^2 + c^2 - 2bc \cos(A)$$
 $\cos(A) = \frac{b^2 + c^2 - a^2}{2bc}$

$$b^2 = a^2 + c^2 - 2ac \cos(B)$$
 $\cos(B) = \frac{a^2 + c^2 - b^2}{2ac}$

$$c^2 = a^2 + b^2 - 2ab\cos(C)$$
 $\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}$

Chapter 16: Radian Measure and Arc Length

 $\theta = \frac{s}{r}$ (where θ is a central angle in radians, s is a length of an intercepted arc, and r is a radius of a circle)

Area of sector = $\frac{r^2\theta}{2}$ (where θ is a central angle in radians and r is a radius of a circle)

Area of segment = $r^2 \cdot \cos^{-1}\left(\frac{r-h}{r}\right) - (r-h) \cdot \sqrt{2rh-h^2}$ (where r is a radius of a circle, h is a height of a segment, and $\cos^{-1}\left(\frac{r-h}{r}\right)$ is in radians)

Chapter 19: Ratio, Proportion, and Variation

Direct Variation:
$$y = kx$$
 or $\frac{y_2}{y_1} = \frac{x_2}{x_1}$

Power Variation:
$$y = kx^n$$
 or $\frac{y_2}{y_1} = \frac{(x_2)^n}{(x_1)^n}$

Inverse Variation:
$$y = \frac{k}{x}$$
 or $\frac{y_2}{y_1} = \frac{x_1}{x_2}$

Joint Variation: y = kxw