TMTH 105

Final Exam Formula Sheet

Chapter 1: Numerical Computation

Distance $=$ Rate \times Time
Amount $=$ Rate \times Base (where Rate is in decimal form)
Percent change $=\frac{(\text { new value }- \text { original value })}{\text { original value }} \times 100$
Percent efficiency $=\frac{\text { output }}{\text { input }} \times 100$
Percent error $=\frac{(\text { measured value }- \text { known value })}{\text { known value }} \times 100$
Percent concentration of ingredient $A=\frac{\text { amount of } A}{\text { total amount of mixture }} \times 100$

Chapter 2: Algebra

$(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2} \quad a^{2}-b^{2}=(a-b)(a+b)$

Given nonzero real numbers x and y, and integers m and n :
$x^{1}=x$
$x^{0}=1$
$x^{-n}=\frac{1}{x^{n}}$
$\left(x^{m}\right)^{n}=x^{m \cdot n}$
$x^{m} \cdot x^{n}=x^{m+n}$
$\frac{x^{m}}{x^{n}}=x^{m-n}$
$(x y)^{n}=x^{n} y^{n}$
$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
$\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}$

Chapter 5: Graphs

slope $m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad y$-intercept $=b$
Equation of line in slope-intercept form: $\quad y=m x+b$

Chapter 6: Geometry

2-Dimensional Shape	Formulas
Circle	Circumference $=2 \pi r$ or πd
	$\text { Area }=\pi r^{2} \text { or } \frac{\pi d^{2}}{4}$
Square	Perimeter $=4 s$
	Area $=s^{2}$
Rectangle	Perimeter $=2(l+w)$
	Area $=l w$
Parallelogram	Perimeter $=2(a+b)$
	Area = bh
Rhombus	Perimeter $=4 s$
	Area $=$ sh
Trapezoid	Perimeter $=a+b+c+d$
	$\text { Area }=\frac{(a+b) h}{2}$
Triangle	$\text { Area }=\frac{b h}{2}$ or using Hero's Formula, Area $=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$

3-Dimensional Shape	Formulas
Cube	Volume $=a^{3}$
	Surface Area $=6 a^{2}$
Rectangular parallelepiped	Volume $=l w h$
	Surface Area $=2(l w+h w+l h)$
Any cylinder or prism	Volume $=$ (area of base)(altitude)
Right cylinder or prism	Lateral surface area $=$ (perimeter of base)(altitude) (not including bases)
Sphere	Volume $=\frac{4}{3} \pi r^{3}$
	Surface area $=4 \pi r^{2}$
Any cone or pyramid	Volume $=\frac{h}{3}($ area of base $)$
Right circular cone or regular pyramid	Lateral surface area $=\frac{s}{2}($ perimeter of base $)$
Frustum (any cone or pyramid)	Volume $=\frac{h}{3}\left(A_{1}+A_{2}+\sqrt{A_{1} A_{2}}\right)$
Frustum (right circular cone or regular pyramid)	Lateral surface area $=\frac{s}{2}($ sum of base perimeters $)=\frac{s}{2}$$\left(P_{1}+P_{2}\right)$

Chapter 7: Right Triangles

$1 \mathrm{rev}=360^{\circ}=2 \pi \mathrm{rad}, \quad 1^{\circ}=60^{\prime}, \quad 1^{\prime}=60^{\prime \prime}, \quad 1 \mathrm{rad} \approx 57.3^{\circ}$

Given $(x, y) \neq(0,0)$ on terminal arm of angle θ, let $r=\sqrt{x^{2}+y^{2}}$. Then,
$\sin (\theta)=\frac{y}{r} \quad \cos (\theta)=\frac{x}{r} \quad \tan (\theta)=\frac{y}{x}$
$\csc (\theta)=\frac{1}{\sin (\theta)} \quad \sec (\theta)=\frac{1}{\cos (\theta)} \quad \cot (\theta)=\frac{1}{\tan (\theta)}$
$c^{2}=a^{2}+b^{2}$ (Pythagorean Theorem)
$\sin (\theta)=\frac{\text { opp }}{\text { hyp }} \quad \cos (\theta)=\frac{\text { adj }}{\text { hyp }} \quad \tan (\theta)=\frac{\text { opp }}{\text { adj }}$

Chapter 8: Factoring $\quad(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2} \quad a^{2}-b^{2}=(a-b)(a+b)$

Chapter 9: Fractions $\quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \quad \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}$
distance $=$ speed \times time
work done $=$ rate of work \times time
amount of flow $=$ flow rate \times time

Chapter 11: Determinants

Second order determinant:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Cramer’s Rule: Given system $\quad \begin{aligned} & a_{1} x+b_{1} y=c_{1} \\ & a_{2} x+b_{2} y=c_{2}\end{aligned}, \quad x=\frac{\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|} \quad y=\frac{\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}$

Chapter 13: Exponents and Radicals

$\sqrt[n]{a}=a^{1 / n}$

$$
a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

Given nonzero real numbers x and y, and integers m and n :
$x^{1}=x$
$x^{0}=1$
$x^{-n}=\frac{1}{x^{n}}$
$\left(x^{m}\right)^{n}=x^{m \cdot n}$
$x^{m} \cdot x^{n}=x^{m+n}$
$\frac{x^{m}}{x^{n}}=x^{m-n}$
$(x y)^{n}=x^{n} y^{n}$
$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$
$\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}$

Chapter 14: Quadratic Equations

Given $a x^{2}+b x+c=0$, where $a \neq 0, \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad$ (quadratic formula)

Chapter 15: Oblique Triangles and Vectors

$\sin \theta=\sin \left(180^{\circ}-\theta\right) \quad \cos \theta=\cos \left(360^{\circ}-\theta\right) \quad \tan \theta=\tan \left(180^{\circ}+\theta\right)$

Law of Sines: $\quad \frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
Law of Cosines: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos (A)$
$\cos (\mathrm{A})=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$b^{2}=a^{2}+c^{2}-2 a c \cos (B)$
$\cos (\mathrm{B})=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$c^{2}=a^{2}+b^{2}-2 a b \cos (C)$
$\cos (\mathrm{C})=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Chapter 16: Radian Measure and Arc Length

$\theta=\frac{s}{r}$ (where θ is a central angle in radians, s is a length of an intercepted arc, and r is a radius of a circle)

Area of sector $=\frac{r^{2} \theta}{2}$ (where θ is a central angle in radians and r is a radius of a circle)
Area of segment $=r^{2} \cdot \cos ^{-1}\left(\frac{r-h}{r}\right)-(r-h) \cdot \sqrt{2 r h-h^{2}} \quad$ (where r is a radius of a circle,
h is a height of a segment, and $\cos ^{-1}\left(\frac{r-h}{r}\right)$ is in radians)

Chapter 19: Ratio, Proportion, and Variation

Direct Variation: $\quad y=k x \quad$ or $\quad \frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}$
Power Variation: $\quad y=k x^{n} \quad$ or $\frac{y_{2}}{y_{1}}=\frac{\left(x_{2}\right)^{n}}{\left(x_{1}\right)^{n}}$
Inverse Variation: $y=\frac{k}{x} \quad$ or $\quad \frac{y_{2}}{y_{1}}=\frac{x_{1}}{x_{2}}$
Joint Variation: $\quad y=k x w$

