<u>TMTH 105</u> <u>Midterm Exam Formula Sheet</u>

Chapter 1: Numerical Computation

Distance = Rate × Time Amount = Rate × Base (where Rate is in decimal form) Percent change = $\frac{(\text{new value-original value})}{\text{original value}} \times 100$ Percent efficiency = $\frac{\text{output}}{\text{input}} \times 100$ Percent error = $\frac{(\text{measured value-known value})}{\text{known value}} \times 100$

Percent concentration of ingredient A = $\frac{\text{amount of A}}{\text{total amount of mixture}} \times 100$

Chapter 2: Algebra

 $(a \pm b)^2 = a^2 \pm 2ab + b^2$ $a^2 - b^2 = (a - b)(a + b)$

Given nonzero real numbers x and y, and integers m and n:

$$x^{1} = x x^{0} = 1 x^{-n} = \frac{1}{x^{n}}$$
$$(x^{m})^{n} = x^{m \cdot n} x^{m} \cdot x^{n} = x^{m+n} \frac{x^{m}}{x^{n}} = x^{m-n}$$
$$(xy)^{n} = x^{n}y^{n} \left(\frac{x}{y}\right)^{n} = \frac{x^{n}}{y^{n}} \left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)$$

Chapter 5: Graphs

slope $m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$, *y*-intercept = *b*

Equation of line in slope-intercept form: y = mx + b

п

Chapter 6: Geometry

2-Dimensional Shape	Formulas
Circle	$Circumference = 2\pi r \text{ or } \pi d$
	Area = $\pi r^2 \operatorname{or} \frac{\pi d^2}{4}$
Square	Perimeter = $4s$
	Area = s^2
Rectangle	Perimeter = $2(l + w)$
	Area = lw
Parallelogram	Perimeter = $2(a + b)$
	Area = bh
Rhombus	Perimeter = $4s$
	Area = sh
Trapezoid	Perimeter = a + b + c + d
	Area = $\frac{(a+b)h}{2}$
Triangle	Area $=\frac{bh}{2}$
	or using Hero's Formula, Area = $\sqrt{s(s-a)(s-b)(s-c)}$
	where $s = \frac{a+b+c}{2}$

3-Dimensional Shape	Formulas
Cube	Volume = a^3
	Surface Area = $6a^2$
Rectangular parallelepiped	Volume = lwh
	Surface Area = $2(lw + hw + lh)$
Any cylinder or prism	Volume = (area of base)(altitude)
Right cylinder or prism	Lateral surface area = (perimeter of base)(altitude)
	(not including bases)
Sphere	Volume = $\frac{4}{3}\pi r^3$
	Surface area = $4\pi r^2$
Any cone or pyramid	Volume = $\frac{h}{3}$ (area of base)
Right circular cone or regular pyramid	Lateral surface area = $\frac{s}{2}$ (perimeter of base)
Frustum (any cone or pyramid)	Volume = $\frac{h}{3} (A_1 + A_2 + \sqrt{A_1 A_2})$
Frustum (right circular cone or regular pyramid)	Lateral surface area = $\frac{s}{2}$ (sum of base perimeters) = $\frac{s}{2}(P_1 + P_2)$
pyrame,	$-\frac{1}{2}(\text{sum of base perimeters}) = \frac{1}{2}(P_1 + P_2)$

Chapter 7: Right Triangles

 $1 \ rev = 360^\circ = 2\pi \ rad, \qquad 1^\circ = 60' \ , \qquad 1' = 60'', \qquad 1 \ rad \approx 57.3^\circ$

Given $(x, y) \neq (0, 0)$ on terminal arm of angle θ , let $r = \sqrt{x^2 + y^2}$. Then,

 $\sin(\theta) = \frac{y}{r}$ $\cos(\theta) = \frac{x}{r}$ $\tan(\theta) = \frac{y}{x}$

 $\csc(\theta) = \frac{1}{\sin(\theta)}$ $\sec(\theta) = \frac{1}{\cos(\theta)}$ $\cot(\theta) = \frac{1}{\tan(\theta)}$

$$c^{2} = a^{2} + b^{2}$$
 (Pythagorean Theorem)
 $\sin(\theta) = \frac{\text{opp}}{\text{hyp}}$ $\cos(\theta) = \frac{\text{adj}}{\text{hyp}}$ $\tan(\theta) = \frac{\text{opp}}{\text{adj}}$