## TMTH 111

## FINAL EXAM FORMULA SHEET

## CHAPTER 1: Numerical Computation

Distance $=$ Rate $\times$ Time $\quad$ Amount $=$ Rate $\times$ Base $\quad($ where rate is in decimal form)
$\%$ change $=\frac{\text { new value }- \text { original value }}{\text { original value }} \times 100 \quad \%$ error $=\frac{\text { Measured Value }- \text { Known value }}{\text { Known value }} \times 100$
$\%$ efficiency $=\frac{\text { output }}{\text { input }} \times 100$
$\%$ conc. of $A=\frac{\text { Amount of } A}{\text { Total Amount of Mixture }} \times 100$
Metric Prefixes:

| $10^{12}$ | $10^{9}$ | $10^{6}$ | $10^{3}$ | 10 | 1 | $10^{-1}$ | $10^{-2}$ | $10^{-3}$ | $10^{-6}$ | $10^{-9}$ | $10^{-12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tera | giga | mega | kilo | deca | Unit: <br> $\mathrm{m}, \mathrm{gr}, \mathrm{L}$ | deci | centi | milli | micro | nano | pico |

## CHAPTER 5: Graphs

$$
y=m x+b \quad m=\frac{\text { rise }}{r u n}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

## CHAPTER 6: Geometry

| NAME | FORMULA |
| :--- | :--- |
| Circle | Circumference $=2 \pi r$ or $\pi d$ |
|  | Area $=\pi r^{2}$ or $\frac{\pi d^{2}}{4}$ |
|  | Perimeter $=4 s$ |
|  | Area $=s^{2}$ |
| Rectangle | Perimeter $=2(l+w)$ |
|  | Area $=l w$ |
|  | Perimeter $=2(a+b)$ |
|  | Area $=b h$ |
|  | Perimeter $=4 s$ |
|  | Area $=s h$ |


| NAME | FORMULA |
| :---: | :---: |
| Trapezoid | Perimeter $=a+b+c+d$ |
|  | $\text { Area }=\frac{(a+b) h}{2}$ |
| Triangle | $\text { Area }=\frac{b h}{2}$ |
| Hero's Formula | $\text { Area }=\sqrt{s(s-a)(s-b)(s-c)} \text { where } s=\frac{a+b+c}{2}$ |
| Cube | Volume $=a^{3}$ |
|  | Surface Area $=6 a^{2}$ |
| Rectangular <br> Parallelepiped | Volume $=l w h$ |
|  | Surface Area $=2(l w+h w+l h)$ |
| Any cylinder or prism | Volume $=$ (area of base) (altitude) |
| Right cylinder or prism | Lateral Area $=($ perimeter of base $)$ (altitude) (not including bases) |
| Sphere | $\text { Volume }=\frac{4}{3} \pi r^{3}$ |
|  | Surface area $=4 \pi r^{2}$ |
| Any cone or pyramid | Volume $=\frac{h}{3}$ (area of base) |
| Right circular cone or regular pyramid | Lateral area $=\frac{s}{2}$ (perimeter of base) |
| Frustum | $\text { Volume }=\frac{h}{3}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\sqrt{A_{1} A_{2}}\right)$ |
| Frustum | $\begin{aligned} \text { Lateral area } & =\frac{s}{2}(\text { sum of base perimeters }) \\ & =\frac{s}{2}\left(P_{1}+P_{2}\right) \end{aligned}$ |

## CHAPTER 7: Right Triangles and Vectors

$$
\begin{array}{lll}
1 \mathrm{rev}=360^{\circ}=2 \pi \text { radians } & 1 \text { rad } \approx 57.3^{\circ} & c^{2}=a^{2}+b^{2} \\
\sin \theta=\frac{\text { opp }}{\text { hyp }} & \cos \theta=\frac{\text { adj }}{\text { hyp }} & \tan \theta=\frac{\text { opp }}{\text { adj }} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

## CHAPTER 9: Fractions and Fractional Equations

Distance $=$ speed $\times$ time $\quad$ Amount of work $=$ rate of work $\times$ time

## CHAPTER 15: Oblique Triangles and Vectors

$\sin \theta=\sin \left(180^{\circ}-\theta\right) \quad \cos \theta=\cos \left(360^{\circ}-\theta\right) \quad \tan \theta=\tan \left(180^{\circ}+\theta\right)$
Law of Sines: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Law of Cosines: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A \quad \quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$b^{2}=a^{2}+c^{2}-2 a c \cos B \quad \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C \quad \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

## CHAPTER 16: Radian Measure, Arc Length and Rotation

$1 \mathrm{rev}=360^{\circ}=2 \pi$ radians
Area of a Sector: $\quad A=\frac{r^{2} \theta}{2} \quad$ (where $\theta$ is in radians)
Area of a Segment: $A=r^{2} \cos ^{-1}\left(\frac{r-h}{r}\right)-(r-h) \sqrt{2 r h-h^{2}}$ (where $\cos ^{-1}\left(\frac{r-h}{r}\right)$ is in radians)

Arc Length:

$$
\theta=\frac{s}{r} \quad r=\frac{S}{\theta} \quad S=\theta r \quad \text { (where } \theta \text { is in radians) }
$$

## CHAPTER 19: Ratio, Proportion and Variation

Direct Variation: $\quad y=k x \quad$ Inverse Variation: $y=\frac{k}{x}$

$$
\text { or } \quad \frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}
$$

$$
\text { or } \quad \frac{y_{2}}{y_{1}}=\frac{x_{1}}{x_{2}}
$$

Joint Variation: $\quad y=k x w \quad$ Power Function: $y=k x^{b}$

## CHAPTER 22: Analytic Geometry

## Straight Line

Distance formula.

Equation of Straight line (General Form)
Equation of Straight line (Slope-Intercept Form)
Equation of Straight line (Point-slope Form)

Equation of Straight line (Two-point form)

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& A x+B y+C=0 \\
& y=m x+b \\
& \text { or } \quad m=\frac{y-y_{1}}{x-x_{1}} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& \frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \tan \phi=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}
\end{aligned}
$$

Intersection angle between two lines

## Circle

Circle of Radius r and Centre at (h,k)
$(x-h)^{2}+(y-k)^{2}=r^{2}$
(Standard Equation)

## Parabola

Vertex at Origin and Horizontal Axis (Standard Equation)

Vertex at Origin and Vertical Axis
(Standard Equation)
Focal Width

## Ellipse

Centre at Origin and Vertical Major Axis
(Standard Equation)
Centre at Origin and Horizontal Major Axis $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(Standard Equation)
Distance from centre to focus.
$c=\sqrt{a^{2}-b^{2}}$
(Note: $a=\sqrt{c^{2}+b^{2}}$ and $b=\sqrt{a^{2}-c^{2}}$ )

Focal width (where $a$ is semi-major axis)

$$
\mathrm{L}=\frac{2 b^{2}}{a}
$$

