<u>TMTH 111</u> <u>FINAL EXAM FORMULA SHEET</u>

<u>CHAPTER 1</u>: Numerical Computation

Distance = Rate × Time Amount = Rate × Base (where rate is in decimal form)
%
$$change = \frac{new \, value - original \, value}{original \, value} \times 100$$
 % $error = \frac{Measured \, Value - Known \, value}{Known \, value} \times 100$

% efficiency = $\frac{output}{input} \times 100$ % conc. of $A = \frac{Amount of A}{Total Amount of Mixture} \times 100$

Metric Prefixes:

10 ¹²	10 ⁹	10 ⁶	10 ³	10	1	10-1	10-2	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²
tera	giga	mega	kilo	deca	Unit: m, gr, L	deci	centi	milli	micro	nano	pico

CHAPTER 5: Graphs

$$y = mx + b$$
 $m = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1}$

<u>CHAPTER 6:</u> Geometry

NAME	FORMULA
	Circumference = $2\pi r$ or πd
Circle	Area = πr^2 or $\frac{\pi d^2}{4}$
	Perimeter = $4s$
Square	Area = s^2
	Perimeter = $2(l + w)$
Rectangle	Area = lw
	Perimeter = $2(a + b)$
Parallelogram	Area = bh
	Perimeter = $4s$
Rhombus	Area = sh

NAME	FORMULA
Trapezoid	Perimeter = $a + b + c + d$
	Area = $\frac{(a+b)h}{2}$
Triangle	Area = $\frac{bh}{2}$
Hero's Formula	Area = $\sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{a+b+c}{2}$
Cuba	Volume = a^3
Cube	Surface Area = $6a^2$
Rectangular	Volume = <i>lwh</i>
Parallelepiped	Surface Area = $2(lw + hw + lh)$
Any cylinder or prism	Volume = (area of base) (altitude)
Right cylinder or prism	Lateral Area = (perimeter of base) (altitude) (not including bases)
Sphere	Volume = $\frac{4}{3} \pi r^3$
	Surface area = $4\pi r^2$
Any cone or pyramid	Volume = $\frac{h}{3}$ (area of base)
Right circular cone or regular pyramid	Lateral area = $\frac{s}{2}$ (perimeter of base)
Frustum	Volume = $\frac{h}{3} (A_1 + A_2 + \sqrt{A_1 A_2})$
Frustum	Lateral area = $\frac{s}{2}$ (sum of base perimeters) = $\frac{s}{2}$ (P ₁ + P ₂)

<u>CHAPTER 7:</u> Right Triangles and Vectors

$1 \text{ rev} = 360^\circ = 2\pi \text{ radians}$	1 rad \approx 57.3°	$c^2 = a^2 + b^2$
$\sin\theta = \frac{\text{opp}}{\text{hyp}}$	$\cos\theta = \frac{\mathrm{adj}}{\mathrm{hyp}}$	$ \tan \theta = \frac{\text{opp}}{\text{adj}} $
$\csc \theta = \frac{1}{\sin \theta}$	$\sec\theta = \frac{1}{\cos\theta}$	$\cot \theta = \frac{1}{\tan \theta}$

<u>CHAPTER 9:</u> Fractions and Fractional Equations

 $Distance = speed \times time$ $Amount of work = rate of work \times time$

CHAPTER 15: Oblique Triangles and Vectors

$\sin\theta = \sin(180^\circ -$	$-\theta$) $\cos\theta = \cos(360^\circ - \theta)$	$\tan\theta=\tan(180^\circ+\theta)$
Law of Sines:	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	
Law of Cosines:	$a^2 = b^2 + c^2 - 2bc \cos A$	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$
	$b^2 = a^2 + c^2 - 2ac \cos B$	$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$
	$c^2 = a^2 + b^2 - 2ab\cos C$	$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

<u>CHAPTER 16:</u> Radian Measure, Arc Length and Rotation

 $1 \text{ rev} = 360^\circ = 2\pi \text{ radians}$

Area of a Sector: $A = \frac{r^2 \theta}{2}$ (where θ is in radians)Area of a Segment: $A = r^2 \cos^{-1} \left(\frac{r-h}{r}\right) - (r-h)\sqrt{2rh - h^2}$ (where $\cos^{-1} \left(\frac{r-h}{r}\right)$ is in radians)Are Length: $\theta = \frac{S}{r}$ $r = \frac{S}{\theta}$ $S = \theta r$ (where θ is in radians)

CHAPTER 19: Ratio, Proportion and Variation

Direct Variation:	y = k x	Inverse Variation:	$y = \frac{\kappa}{x}$
or	$\frac{y_2}{y_1} = \frac{x_2}{x_1}$	or	$\frac{y_2}{y_1} = \frac{x_1}{x_2}$

Compiled by: Humber College Math Department Last revision 06/2017

1.

Joint Variation: y = k x w

Power Function: $y = k x^{b}$

CHAPTER 22: Analytic Geometry

Straight Line

Distance formula.

Equation of Straight line (General Form)

Equation of Straight line (Slope-Intercept Form)

Equation of Straight line (Point-slope Form)

Equation of Straight line (Two-point form)

Intersection angle between two lines

Circle

Circle of Radius r and Centre at (h,k) (Standard Equation)

Parabola

Vertex at Origin and Horizontal Axis (Standard Equation)

Vertex at Origin and Vertical Axis (Standard Equation)

Focal Width

Ellipse

Centre at Origin and Vertical Major Axis (Standard Equation)

Centre at Origin and Horizontal Major Axis (Standard Equation)

Distance from centre to focus.

(*Note*:
$$a = \sqrt{c^2 + b^2}$$
 and $b = \sqrt{a^2 - c^2}$)

 $L = \frac{2b^2}{a}$

 $c = \sqrt{a^2 - b^2}$

 $y^2 = 4px$

 $x^2 = 4py$

L = |4p|

 $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Focal width (where *a* is semi-major axis)

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$Ax + By + C = 0$$

$$y = mx + b$$

$$m = \frac{y - y_1}{x - x_1}$$

or

$$y - y_1 = m (x - x_1)$$

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\tan \phi = \frac{m_2 - m_1}{1 + m_1 m_2}$$

$$(x - h)^2 + (y - k)^2 = r^2$$