TMTH 111

MIDTERM FORMULA SHEET

CHAPTER 1: Numerical Computation

Distance $=$ Rate \times Time \quad Amount $=$ Rate \times Base $\quad($ where rate is in decimal form $)$ $\%$ change $=\frac{\text { new value }- \text { original value }}{\text { original value }} \times 100 \quad \%$ error $=\frac{\text { Measured Value }- \text { Known value }}{\text { Known value }} \times 100$
$\%$ efficiency $=\frac{\text { output }}{\text { input }} \times 100$

$$
\% \text { conc. of } A=\frac{\text { Amount of } A}{\text { Total Amount of Mixture }} \times 100
$$

Metric Prefixes.

10^{12}	10^{9}	10^{6}	10^{3}	10	10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
tera	giga	mega	kilo	deca	deci	centi	milli	micro	nano	pico

CHAPTER 6: Geometry

NAME	FORMULA
Circle	Circumference $=2 \pi r$ or πd
	Area $=\pi r^{2}$ or $\frac{\pi d^{2}}{4}$
	Perimeter $=4 s$
	Area $=s^{2}$
Rectangle	Perimeter $=2(l+w)$
	Area $=l \cdot w$
Rhombullelogram	Perimeter $=2(a+b)$
	Area $=b \cdot h$
	Perimeter $=4 s$
Trapezoid	Perimeter $=a+b+c+d$
	Area $=\frac{(a+b) \cdot h}{2}$
Triangle	Area $=\frac{b \cdot h}{2}$
Hero's Formula	Area $=\sqrt{s(s-a)(s-b)(s-c)}$ where $S=\frac{a+b+c}{2}$

NAME	FORMULA
Cube	Volume $=a^{3}$
	Surface Area $=6 a^{2}$
Rectangular Parallelepiped	Volume $=1 w h$
	Surface Area $=2(l w+h w+l h)$
Any cylinder or prism	Volume = (area of base)•(altitude)
Right cylinder or prism	Lateral Area $=($ perimeter of base) \cdot (altitude) (not including bases)
Sphere	$\text { Volume }=\frac{4}{3} \pi r^{3}$
	Surface area $=4 \pi r^{2}$
Any cone or pyramid	$\text { Volume }=\frac{h}{3} \bullet(\text { area of base })$
Right circular cone or regular pyramid	Lateral area $=\frac{s}{2} \cdot($ perimeter of base $)$
Frustum	$\text { Volume }=\frac{h}{3} \cdot\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\sqrt{A_{1} A_{2}}\right)$
Frustum	$\begin{aligned} \text { Lateral area } & =\frac{s}{2} \cdot(\text { sum of base perimeters }) \\ & =\frac{s}{2} \cdot\left(P_{1}+P_{2}\right) \end{aligned}$

CHAPTER 7: Right Triangles and Vectors

$$
\begin{array}{lll}
1 \text { rev }=360^{\circ}=2 \pi \text { radians } & 1 \text { radian }=57.3^{\circ} & c^{2}=a^{2}+b^{2} \\
\sin \theta=\frac{\text { opp }}{\text { hyp }} & \cos \theta=\frac{\text { adj }}{\text { hyp }} & \tan \theta=\frac{\text { opp }}{\text { adj }} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

CHAPTER 15: Oblique Triangles and Vectors

Law of Sines: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Law of Cosines: $\quad \begin{array}{lll}a^{2}=b^{2}+c^{2}-2 b c \cdot \cos A & \text { or } & \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\ b^{2}=a^{2}+c^{2}-2 a c \cdot \cos B & \text { or } & \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\ c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C & \text { or } & \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}\end{array}$

