<u>TMTH 114</u> <u>Midterm Exam Formula Sheet</u>

Chapter 8: Factoring	$(a \pm b)^2 = a^2 \pm 2ab + b^2$	$a^2 - b^2 = (a - b)(a + b)$	
<u>Chapter 9: Fractions</u>	$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \qquad \frac{a}{b}$	$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$	

Chapter 13: Exponents and Radicals

$$\sqrt[n]{a} = a^{1/n} \qquad \qquad a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

Given nonzero real numbers x and y, and integers m and n:

$$x^{1} = x x^{0} = 1 x^{-n} = \frac{1}{x^{n}}$$
$$(x^{m})^{n} = x^{m \cdot n} x^{m} \cdot x^{n} = x^{m+n} \frac{x^{m}}{x^{n}} = x^{m-n}$$
$$(xy)^{n} = x^{n}y^{n} \left(\frac{x}{y}\right)^{n} = \frac{x^{n}}{y^{n}} \left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^{n}$$

Chapter 19: Ratio, Proportion, and Variation

Direct Variation:	y = kx	or	$\frac{y_2}{y_1} = \frac{x_2}{x_1}$
Power Variation:	$y = kx^n$	or	$\frac{y_2}{y_1} = \frac{(x_2)^n}{(x_1)^n}$
Inverse Variation	$: y = \frac{k}{x}$	or	$\frac{y_2}{y_1} = \frac{x_1}{x_2}$
Joint Variation:	y = kxw		

Chapter 20: Exponential and Logarithmic Functions

Growth:	Decay:		Growth to an Upper Limit:
$y = ae^{nt}$	y = c	ne^{-nt}	$y = a \left(1 - e^{-nt} \right)$
Exponential Form:	$y = b^x$	Logarithmic Form:	$\log_b y = x$

Properties of logarithms (where b, M, N > 0, b \neq 1, and p is a real number):

$\log_b MN = \log_b M + \log_b N$	$\log_b \frac{M}{N} = \log_b M - \log_b N$		
$\log_b M^p = p \cdot \log_b M$	$\log_b 1 = 0$	$\log_b b = 1$	
$\log_b b^M = M$	$b^{\log_b M} = M$	$\log_b a = \frac{\log a}{\log b} = \frac{\ln a}{\ln b}$	

Common logarithm: $\log x = \log_{10} x$ Natural logarithm: $\ln x = \log_e x$, where $e \approx 2.718$