TMTH 120 Final Exam Formula Sheet

Chapter 1: Numerical Computation

Distance = Rate \times Time

Amount = Rate \times Base (where Rate is in decimal form)

Percent change $=\frac{\text{new value-original value}}{\text{original value}} \times 100$

Percent efficiency = $\frac{\text{output}}{\text{input}} \times 100$

Percent error = $\frac{\text{measured value-known value}}{\text{known value}} \times 100$

Percent concentration of ingredient A = $\frac{\text{amount of A}}{\text{total amount of mixture}} \times 100$

Chapter 5: Graphs

slope $m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$, y-intercept = b

Equation of line in slope-intercept form: y = mx + b

Chapter 7: Right Triangles

 $1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}, \qquad 1^{\circ} = 60', \qquad 1' = 60'', \qquad 1 \text{ rad} \approx 57.3^{\circ}$

Given $(x, y) \neq (0,0)$ on terminal arm of angle θ , let $r = \sqrt{x^2 + y^2}$. Then

 $\sin(\theta) = \frac{y}{r}$ $\cos(\theta) = \frac{x}{r}$ $\tan(\theta) = \frac{y}{x}$

 $\csc(\theta) = \frac{1}{\sin(\theta)}$ $\sec(\theta) = \frac{1}{\cos(\theta)}$ $\cot(\theta) = \frac{1}{\tan(\theta)}$

 $c^2 = a^2 + b^2$ (Pythagorean Theorem)

 $\sin(\theta) = \frac{\text{opp}}{\text{hyp'}},$ $\cos(\theta) = \frac{\text{adj}}{\text{hyp'}},$ $\tan(\theta) = \frac{\text{opp}}{\text{adj}}$

Compiled by: Humber College Math Department Last revision: 06/2016

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$
 $a^2 - b^2 = (a - b)(a + b)$

$$a^2 - b^2 = (a - b)(a + b)$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \qquad \qquad \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

Chapter 13: Exponents and Radicals

$$\sqrt[n]{a} = a^{1/n}$$

$$\sqrt[n]{a} = a^{1/n}$$
 $a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$

Given nonzero real numbers x and y, and integers m and :

$$x^1 = x$$

$$x^0 = 1$$

$$x^{-n} = \frac{1}{x^n}$$

$$(x^m)^n = x^{m \cdot n}$$

$$x^m \cdot x^n = x^{m+n}$$

$$\frac{x^m}{x^n} = x^{m-n}$$

$$(xy)^n = x^n y^n$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$$

Chapter 17: Trigonometric Functions

Sine wave as a function of an angle x: $y = a \sin(bx + c)$

$$y = a \sin(bx + c)$$

$$amplitude = |a|$$

period =
$$\frac{360^{\circ}}{b}$$
 or $\frac{2\pi}{b}$

period =
$$\frac{360^{\circ}}{h}$$
 or $\frac{2\pi}{h}$ frequency = $\frac{b}{360^{\circ}}$ or $\frac{b}{2\pi}$

phase angle =
$$c$$

phase shift =
$$-\frac{c}{b}$$

Sine wave as a function of time t: $y = a \sin(\omega t + \phi)$

$$y = a \sin(\omega t + \phi)$$

$$amplitude = |a|$$

angular velocity =
$$\omega$$

period =
$$\frac{2\pi}{\omega}$$

frequency =
$$\frac{\omega}{2\pi}$$

phase angle
$$= \phi$$

phase shift
$$=-\frac{\phi}{\omega}$$

Cosine and Sine Curves Related: $cos(\theta) = sin(\theta + 90^\circ)$

$$\cos(\theta) = \sin(\theta + 90^{\circ})$$

Chapter 19: Ratio, Proportion, and Variation

Direct Variation:
$$y = kx$$
 or $\frac{y_2}{y_1} = \frac{x_2}{x_1}$

Power Variation:
$$y = kx^n$$
 or $\frac{y_2}{y_1} = \frac{(x_2)^n}{(x_1)^n}$

Inverse Variation:
$$y = \frac{k}{x}$$
 or $\frac{y_2}{y_1} = \frac{x_1}{x_2}$

Joint Variation:
$$y = kxw$$

Chapter 20: Exponential and Logarithmic Functions

$$y = ae^{nt} y = ae^{-nt} y = a(1 - e^{-nt})$$

Exponential Form:
$$y = b^x$$
 Logarithmic Form: $\log_b(y) = x$

Properties of logarithms (where b, M, N > 0, b \neq 1, and p is a real number):

$$\log_b(M \cdot N) = \log_b(M) + \log_b(N) \qquad \qquad \log_b\left(\frac{M}{N}\right) = \log_b(M) - \log_b(N)$$

$$\log_b(M^p) = p \cdot \log_b(M) \qquad \qquad \log_b(1) = 0 \qquad \qquad \log_b(b) = 1$$

$$\log_b(b^M) = M \qquad \qquad b^{\log_b(M)} = M \qquad \qquad \log_b(a) = \frac{\log(a)}{\log(b)} = \frac{\ln(a)}{\ln(b)}$$

Common logarithm: $\log(x) = \log_{10}(x)$

Natural logarithm: $ln(x) = log_e(x)$, where $e \approx 2.718$