TMTH 120

Final Exam Formula Sheet

Chapter 1: Numerical Computation

Distance $=$ Rate \times Time
Amount $=$ Rate \times Base (where Rate is in decimal form)
Percent change $=\frac{\text { new value }- \text { original value }}{\text { original value }} \times 100$
Percent efficiency $=\frac{\text { output }}{\text { input }} \times 100$
Percent error $=\frac{\text { measured value }- \text { known value }}{\text { known value }} \times 100$
Percent concentration of ingredient $A=\frac{\text { amount of } A}{\text { total amount of mixture }} \times 100$

Chapter 5: Graphs

slope $m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad y$-intercept $=b$
Equation of line in slope-intercept form: $\quad y=m x+b$

Chapter 7: Right Triangles

$1 \mathrm{rev}=360^{\circ}=2 \pi \mathrm{rad}, \quad 1^{\circ}=60^{\prime}, \quad 1^{\prime}=60^{\prime \prime}, \quad 1 \mathrm{rad} \approx 57.3^{\circ}$

Given $(x, y) \neq(0,0)$ on terminal arm of angle θ, let $r=\sqrt{x^{2}+y^{2}}$. Then
$\sin (\theta)=\frac{\mathrm{y}}{\mathrm{r}} \quad \cos (\theta)=\frac{\mathrm{x}}{\mathrm{r}} \quad \tan (\theta)=\frac{\mathrm{y}}{\mathrm{x}}$
$\csc (\theta)=\frac{1}{\sin (\theta)} \quad \sec (\theta)=\frac{1}{\cos (\theta)} \quad \cot (\theta)=\frac{1}{\tan (\theta)}$
$c^{2}=a^{2}+b^{2}$ (Pythagorean Theorem)
$\sin (\theta)=\frac{\text { opp }}{\text { hyp }}, \quad \cos (\theta)=\frac{\text { adj }}{\text { hyp }^{\prime}}, \quad \tan (\theta)=\frac{\text { opp }}{\text { adj }}$

$$
(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2} \quad a^{2}-b^{2}=(a-b)(a+b)
$$

Chapter 9: Fractions

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \quad \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
$$

Chapter 13: Exponents and Radicals

$\sqrt[n]{a}=a^{1 / n} \quad a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$

Given nonzero real numbers x and y, and integers m and :
$x^{1}=x$
$x^{0}=1$
$x^{-n}=\frac{1}{x^{n}}$
$\left(x^{m}\right)^{n}=x^{m \cdot n}$
$x^{m} \cdot x^{n}=x^{m+n} \quad \frac{x^{m}}{x^{n}}=x^{m-n}$
$(x y)^{n}=x^{n} y^{n}$
$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$

$$
\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}
$$

Chapter 17: Trigonometric Functions

Sine wave as a function of an angle $x: \quad y=a \sin (b x+c)$ amplitude $=|\mathrm{a}| \quad$ period $=\frac{360^{\circ}}{b}$ or $\frac{2 \pi}{b} \quad$ frequency $=\frac{b}{360^{\circ}}$ or $\frac{b}{2 \pi}$ phase angle $=c \quad$ phase shift $=-\frac{c}{b}$

Sine wave as a function of time $t: \quad y=a \sin (\omega t+\phi)$

amplitude $=\|\mathrm{a}\|$	angular velocity $=\omega$	period $=\frac{2 \pi}{\omega}$
frequency $=\frac{\omega}{2 \pi}$	phase angle $=\phi$	phase shift $=-\frac{\phi}{\omega}$

Cosine and Sine Curves Related: $\quad \cos (\theta)=\sin \left(\theta+90^{\circ}\right)$

Chapter 19: Ratio, Proportion, and Variation

Direct Variation: $y=k x \quad$ or $\quad \frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}$
Power Variation: $y=k x^{n} \quad$ or $\frac{y_{2}}{y_{1}}=\frac{\left(x_{2}\right)^{n}}{\left(x_{1}\right)^{n}}$
Inverse Variation: $y=\frac{k}{x} \quad$ or $\quad \frac{y_{2}}{y_{1}}=\frac{x_{1}}{x_{2}}$
Joint Variation: $\quad y=k x w$

Chapter 20: Exponential and Logarithmic Functions

Growth: Decay: Growth to an Upper Limit:
$y=a e^{n t} \quad y=a e^{-n t} \quad y=a\left(1-e^{-n t}\right)$

Exponential Form: $\quad y=b^{x} \quad$ Logarithmic Form: $\quad \log _{b}(y)=x$

Properties of logarithms (where $\mathrm{b}, \mathrm{M}, \mathrm{N}>0, \mathrm{~b} \neq 1$, and p is a real number):
$\log _{b}(M \cdot N)=\log _{b}(M)+\log _{b}(N) \quad \log _{b}\left(\frac{M}{N}\right)=\log _{b}(M)-\log _{b}(N)$
$\log _{b}\left(M^{p}\right)=p \cdot \log _{b}(M) \quad \log _{b}(1)=0 \quad \log _{b}(b)=1$
$\log _{b}\left(b^{M}\right)=M \quad \quad b^{\log _{b}(M)}=M \quad \log _{b}(a)=\frac{\log (a)}{\log (b)}=\frac{\ln (a)}{\ln (b)}$

Common logarithm: $\log (x)=\log _{10}(x)$
Natural logarithm: $\ln (x)=\log _{e}(x)$, where $e \approx 2.718$

