TMTH 135-909 FINAL EXAM FORMULA SHEET

CHAPTER 1: Numerical Computation

Distance = Rate \times Time (where rate is in decimal form)

Amount = Rate \times Base (where rate is in decimal form)

% change =
$$\frac{\text{New Value - Original Value}}{\text{Original Value}} \times 100$$

$$\% \text{ error} = \frac{\text{Measured Value - Known Value}}{\text{Known Value}} \times 100$$

% efficiency =
$$\frac{\text{Output}}{\text{Input}} \times 100$$

% concentration of A =
$$\frac{\text{Amount of A}}{\text{Total Amount of Mixture}} \times 100$$

CHAPTER 2: Algebra

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$(a-b)(a+b)=a^2-b^2$$

Given nonzero real numbers x and y, and integers m and n:

$$x^1 = x$$

$$x^0 = 1$$

$$x^{-n} = \frac{1}{x^n}$$

$$(x^m)^n = x^{mn}$$

$$x^m \cdot x^n = x^{m+n}$$

$$\frac{x^m}{x^n} = x^{m-n}$$

$$(xy)^n = x^n y^n$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$$

CHAPTER 7: Right Triangles and Vectors

$$1 \text{ rev} = 360^{\circ} = 2\pi \text{ radians}$$

1 radian = 57.3°
$$c^2 = a^2 + b^2$$

$$c^2 = a^2 + b^2$$

$$\sin\theta = \frac{opp}{hyp}$$

$$\cos\theta = \frac{adj}{hyp}$$

$$\tan \theta = \frac{opp}{adj}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\sin \theta = \frac{opp}{hyp}$$
 $\cos \theta = \frac{adj}{hyp}$ $\tan \theta = \frac{opp}{adj}$ $\csc \theta = \frac{1}{\sin \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

CHAPTER 11: Determinants (For a system of two linear equations)

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

General Form of System of Two Linear Equation:

$$a_2 x + b_2 y = c_2$$

Cramer's Rule:
$$x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$
 and $y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \\ \hline a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$

$$y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$

CHAPTER 14: Quadratic Equations

General Form of a Quadratic: $ax^2 + bx + c$

$$ax^2 + bx + c$$

Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

CHAPTER 15: Oblique Triangles and Vectors

$$\sin \theta = \sin(180^{\circ} - \theta)$$
 $\cos \theta = \cos(360^{\circ} - \theta)$ $\tan \theta = \tan(180^{\circ} + \theta)$

Law of Sines:
$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

Law of Cosines:
$$a^2 = b^2 + c^2 - 2bc \cos(A)$$
 $\cos(A) = \frac{b^2 + c^2 - a^2}{2bc}$

$$b^2 = a^2 + c^2 - 2ac\cos(B)$$
 $\cos(B) = \frac{a^2 + c^2 - b^2}{2ac}$

$$c^2 = a^2 + b^2 - 2ab\cos(C)$$
 $\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}$

CHAPTER 16: Radian Measure, Arc Length and Rotation

Central Angle:
$$\theta = \frac{s}{r}$$

Arc Length:
$$s = \theta r$$
 (where θ is in radians)

CHAPTER 19: Ratio, Proportion and Variation

Direct Variation:
$$y = k x$$
 Inverse Variation: $y = \frac{k}{x}$

or
$$\frac{y_2}{y_1} = \frac{x_2}{x_1}$$
 or $\frac{y_2}{y_1} = \frac{x_1}{x_2}$

Joint Variation:
$$y = k x w$$

Power Function:
$$y = k x^b$$
 where For $b = 2$: $y = k x^2$

For b = 3:
$$y = k x^3$$

For b = -2:
$$y = \frac{k}{x^2}$$