<u>TMTH 202</u> FINAL EXAM FORMULA SHEET

<u>CHAPTER 11:</u> Determinants

Cramer's Rule:

$$x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \\ a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \qquad y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \\ a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \qquad \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0$$
$$x = \frac{\begin{vmatrix} k_1 & b_1 & c_1 \\ k_2 & b_2 & c_2 \\ k_3 & b_3 & c_3 \end{vmatrix}}{\Delta} \qquad y = \frac{\begin{vmatrix} a_1 & k_1 & c_1 \\ a_2 & k_2 & c_2 \\ a_3 & k_3 & c_3 \end{vmatrix}}{\Delta} \qquad z = \frac{\begin{vmatrix} a_1 & b_1 & k_1 \\ a_2 & b_2 & k_2 \\ a_3 & b_3 & k_3 \end{vmatrix}}{\Delta}$$

<u>CHAPTER 12:</u> Matrices

$$AA^{-1} = A^{-1}A = I$$
 and $X = A^{-1}B$

<u>CHAPTER 14:</u> Quadratic Equations

Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

<u>CHAPTER 17:</u> Graphs of the Trigonometric Functions

General Sine Wave: $y = a \sin(bx + c)$

amplitude = |a|period = $\frac{360^{\circ}}{b}$ or $\frac{2\pi}{b}$ frequency = $\frac{b}{360^{\circ}}$ or $\frac{b}{2\pi}$ phase angle = cphase shift = $-\frac{c}{b}$ $\cos \theta = \sin (\theta + 90^{\circ})$

Sine Wave as a Function of Time t: $y = a \sin(\omega t + \phi)$ amplitude = |a|angular velocity = ω period = $\frac{2\pi}{\omega}$ frequency = $\frac{\omega}{2\pi}$ phase angle = ϕ phase shift = $-\frac{\phi}{\omega}$

Addition of a sine wave and cosine wave:

A sin
$$\omega t + B \cos \omega t = R \sin(\omega t + \phi)$$
 where
 $R = \sqrt{A^2 + B^2}$ and $\phi = \arctan\left(\frac{B}{A}\right)$

Transforming between Polar and Rectangular Coordinates:

$$x = r \cos \theta$$
 and $y = r \sin \theta$
 $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan(\frac{y}{x})$

<u>CHAPTER 18:</u> Trigonometric Identities and Equations

$$\cot\theta = \frac{1}{\tan\theta} \qquad \sec\theta = \frac{1}{\cos\theta} \qquad \csc\theta = \frac{1}{\sin\theta} \qquad \tan\theta = \frac{\sin\theta}{\cos\theta} \qquad \cot\theta = \frac{\cos\theta}{\sin\theta}$$
$$\sin^2\theta + \cos^2\theta = 1 \qquad 1 + \tan^2\theta = \sec^2\theta \qquad 1 + \cot^2\theta = \csc^2\theta$$

<u>CHAPTER 20:</u> Exponential and Logarithmic Functions

Growth	Decay	Growth to an Upper Limit
$y = ae^{nt}$	$y = ae^{-nt}$	$y = a(1 - e^{-nt})$

Compound Interest

Doubling Time and Half-Life

$$y = a(1 + n)^{t}$$
 $y = a\left(1 + \frac{n}{m}\right)^{mt}$ $t = \frac{\ln 2}{n}$
 $\log_b N = a$ $b^a = N$ $\log\left(\frac{M}{N}\right) = \log M - \log N$

 $\log (MN) = \log M + \log N \qquad \qquad \log M^n = n \ \log M$

<u>CHAPTER 22:</u> Analytic Geometry

Straight Line

Equation of Straight line (General Form)

Equation of Straight line (Slope-Intercept Form)

Equation of Straight line (Point-slope Form)

Equation of Straight line (Two-point form)

Intersection angle between two lines

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Ax + By + C = 0
$$y = mx + b$$
$$m = \frac{y - y_1}{x - x_1}$$
or $y - y_1 = m (x - x_1)$
$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$
tan $\phi = \frac{m_2 - m_1}{1 + m_1 m_2}$

<u>Circle</u>

Standard Equation (Circle of Radius r)	$(x-h)^2 + (y-k)^2 = r^2$
Centre at (h, k)	

Parabola

Standard Equation (Vertex at origin) Axis Horizontal	$y^2 = 4px$
Standard Equation (Vertex at origin) Axis Vertical	$x^2 = 4py$
Focal Width	L = 4p

Ellipse

Standard Equation (Centre at origin)	$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$
Major axis vertical	u b

Standard Equation (Centre at origin) Major axis horizontal

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Distance from centre to focus.	$c=\sqrt{a^2-b^2}$
Focal width (where <i>a</i> is semi-major axis)	$L = \frac{2b^2}{a}$

<u>Hyperbola</u>

Standard equation (Trans. horizontal)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	slopes = $\pm \frac{b}{a}$
Standard equation (Trans. vertical)	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$	slopes = $\pm \frac{a}{b}$
Distance from centre to focus	$c = \sqrt{a^2 + b^2}$	
Focal Width	$L = \frac{2b^2}{a}$	