TMTH 202
FINAL EXAM FORMULA SHEET

CHAPTER 11: Determinants

Cramer's Rule:
$x=\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2} \\ \hline a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
$y=\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2} \\ \hline a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$
$\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \neq 0$
$x=\frac{\left|\begin{array}{lll}k_{1} & b_{1} & c_{1} \\ k_{2} & b_{2} & c_{2} \\ k_{3} & b_{3} & c_{3}\end{array}\right|}{\Delta}$
$y=\frac{\left|\begin{array}{lll}a_{1} & k_{1} & c_{1} \\ a_{2} & k_{2} & c_{2} \\ a_{3} & k_{3} & c_{3}\end{array}\right|}{\Delta}$
$Z=\frac{\left|\begin{array}{lll}a_{1} & b_{1} & k_{1} \\ a_{2} & b_{2} & k_{2} \\ a_{3} & b_{3} & k_{3}\end{array}\right|}{\Delta}$

CHAPTER 12: Matrices

$$
\mathrm{AA}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I} \quad \text { and } \quad \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}
$$

CHAPTER 14: Quadratic Equations

Quadratic Formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

CHAPTER 17: Graphs of the Trigonometric Functions

General Sine Wave: $\quad y=a \sin (b x+c)$
amplitude $=|\mathrm{a}| \quad$ period $=\frac{360^{\circ}}{b}$ or $\frac{2 \pi}{b} \quad$ frequency $=\frac{b}{360^{\circ}}$ or $\frac{b}{2 \pi}$
phase angle $=c \quad$ phase shift $=-\frac{c}{b} \quad \cos \theta=\sin \left(\theta+90^{\circ}\right)$

Sine Wave as a Function of Time t: $\quad y=a \sin (\omega t+\phi)$
amplitude $=|a|$
angular velocity $=\omega$
period $=\frac{2 \pi}{\omega}$
frequency $=\frac{\omega}{2 \pi}$
phase angle $=\phi$
phase shift $=-\frac{\phi}{\omega}$

Addition of a sine wave and cosine wave:

$$
\begin{aligned}
& A \sin \omega t+B \cos \omega t=R \sin (\omega t+\phi) \quad \text { where } \\
& R=\sqrt{A^{2}+B^{2}} \quad \text { and } \quad \phi=\arctan \left(\frac{B}{A}\right)
\end{aligned}
$$

Transforming between Polar and Rectangular Coordinates:

$$
\begin{aligned}
& x=r \cos \theta \text { and } y=r \sin \theta \\
& r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \theta=\arctan \left(\frac{y}{x}\right)
\end{aligned}
$$

CHAPTER 18: Trigonometric Identities and Equations

$$
\begin{aligned}
& \cot \theta=\frac{1}{\tan \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \csc \theta=\frac{1}{\sin \theta} \quad \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

CHAPTER 20: Exponential and Logarithmic Functions

Growth Decay Growth to an Upper Limit

$y=a e^{n t} \quad y=a e^{-n t} \quad y=a\left(1-e^{-n t}\right)$

Compound Interest

$y=a(1+n)^{\mathrm{t}} \quad y=a\left(1+\frac{n}{m}\right)^{m t} \quad t=\frac{\ln 2}{n}$
$\log _{b} N=a \quad b^{a}=N$
$\log \left(\frac{M}{N}\right)=\log M-\log N$
$\log (M N)=\log M+\log N \quad \quad \log M^{n}=n \log M$

CHAPTER 22: Analytic Geometry

Straight Line

Distance formula.
Equation of Straight line (General Form)
Equation of Straight line (Slope-Intercept Form)
Equation of Straight line (Point-slope Form)

Equation of Straight line (Two-point form)

Intersection angle between two lines

Circle

Standard Equation (Circle of Radius r) Centre at (h, k)

Parabola

Standard Equation (Vertex at origin) Axis Horizontal

Standard Equation (Vertex at origin) Axis Vertical

Focal Width

Ellipse

Standard Equation (Centre at origin)
Major axis vertical

Standard Equation (Centre at origin)
Major axis horizontal
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$A x+B y+C=0$
$y=m x+b$
$m=\frac{y-y_{1}}{x-x_{1}}$
or $y-y_{1}=m\left(x-x_{1}\right)$
$\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\tan \phi=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}$
$(x-h)^{2}+(y-k)^{2}=r^{2}$
$y^{2}=4 p x$
$x^{2}=4 p y$
$L=|4 \mathrm{p}|$
$\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Distance from centre to focus.

Focal width (where a is semi-major axis)

Hyperbola

Standard equation (Trans. horizontal)

Standard equation (Trans. vertical)

Distance from centre to focus

Focal Width

$$
c=\sqrt{a^{2}-b^{2}}
$$

$$
L=\frac{2 b^{2}}{a}
$$

$$
\begin{array}{ll}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 & \text { slopes }= \pm \frac{b}{a} \\
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1 & \text { slopes }= \pm \frac{a}{b} \\
c=\sqrt{a^{2}+b^{2}} & \\
L=\frac{2 b^{2}}{a} &
\end{array}
$$

