TMTH 202 MIDTERM EXAM FORMULA SHEET

CHAPTER 11: Determinants

Cramer's Rule:

$$x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \\ a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \qquad y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \\ a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0$$

$$x = \begin{vmatrix} k_1 & b_1 & c_1 \\ k_2 & b_2 & c_2 \\ k_3 & b_3 & c_3 \end{vmatrix} \qquad y = \begin{vmatrix} a_1 & k_1 & c_1 \\ a_2 & k_2 & c_2 \\ a_3 & k_3 & c_3 \end{vmatrix} \qquad z = \begin{vmatrix} a_1 & b_1 & k_1 \\ a_2 & b_2 & k_2 \\ a_3 & b_3 & k_3 \end{vmatrix}$$

CHAPTER 12: *Matrices*

General Sine Wave:

$$A \bullet A^{-1} = A^{-1} \bullet A = I$$
 and $X = A^{-1} \bullet B$

CHAPTER 14: Quadratic Equations

Quadratic Formula:
$$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

CHAPTER 17: Graphs of the Trigonometric Functions

phase angle =
$$c$$
 phase shift = $-\frac{c}{b}$ $\cos \theta = \sin (\theta + 90^{\circ})$

Sine Wave as a Function of Time t: $y = a \sin(\omega t + \phi)$

amplitude =
$$|a|$$
 angular velocity = ω period = $\frac{2\pi}{\omega}$

 $y = a \sin(bx + c)$

frequency =
$$\frac{\omega}{2\pi}$$
 phase angle = ϕ phase shift = $-\frac{\phi}{\omega}$

Addition of a sine wave and cosine wave:

$$A \sin \omega t + B \cos \omega t = R \sin(\omega t + \phi)$$
 where

$$R = \sqrt{A^2 + B^2}$$
 and $\phi = \arctan\left(\frac{B}{A}\right)$

Transforming between Polar and Rectangular Coordinates:

$$x = r \cos \theta$$
 and $y = r \sin \theta$

$$r = \sqrt{x^2 + y^2}$$
 and $\theta = \arctan(\frac{y}{x})$