<u>TMTH 205</u> FINAL EXAM FORMULA SHEET

CHAPTER 6: Geometry

NAME	FORMULA
Circle	Circumference = $2\pi r$ or πd
	Area = πr^2 or $\frac{\pi d^2}{4}$
Square	Perimeter = $4s$
	Area = s^2
Rectangle	Perimeter = $2(l + w)$
	Area = $l \cdot w$
Parallelogram	Perimeter = $2(a + b)$
	Area = $b \cdot h$
Rhombus	Perimeter = $4s$
	Area = $s \cdot h$
Trapezoid	Perimeter = $a + b + c + d$
	Area = $\frac{(a+b) \cdot h}{2}$
Triangle	Area = $\frac{b \cdot h}{2}$
Hero's	Area = $\sqrt{s(s-a)(s-b)(s-c)}$ where
Formula	$s = \frac{a+b+c}{2}$

NAME	FORMULA	
Cube	Volume = a^3	
	Surface Area = $6a^2$	
Rectangular	Volume = lwh	
Parallelepiped	Surface Area = $2(lw + hw + lh)$	
Any cylinder or prism	Volume = (area of base) \cdot (altitude)	
Right cylinder or prism	Lateral Area = (perimeter of base) • (altitude) (not including bases)	
Sphere	Volume = $\frac{4}{3}\pi r^3$	
	Surface area = $4\pi r^2$	

Any cone or pyramid	Volume = $\frac{h}{3}$ • (area of base)	
	h = height of cone or pyramid	
Right circular cone or	Lateral area = $\frac{s}{2}$ • (perimeter of base)	
regular pyramid	s = length of slant side	
Frustum	Volume = $\frac{h}{3} \cdot (A_1 + A_2 + \sqrt{A_1 A_2})$	
	h = height	
Frustum	Lateral area = $\frac{s}{2}$ • (sum of base perimeters)	
	$= \frac{s}{2} \cdot (P_1 + P_2)$: s = length of slant side	

CHAPTER 18: Trigonometric Identities and Equations

 $\cot\theta = \frac{1}{\tan\theta} \qquad \sec\theta = \frac{1}{\tan\theta} \qquad \csc\theta = \frac{1}{\sin\theta} \qquad \tan\theta = \frac{\sin\theta}{\cos\theta} \qquad \cot\theta = \frac{\cos\theta}{\sin\theta}$ $\sin^2\theta + \cos^2\theta = 1 \qquad 1 + \tan^2 = \sec^2\theta \qquad 1 + \cot^2 = \csc^2\theta$

<u>CHAPTER 20:</u> Exponential and Logarithmic Functions

Growth	Decay	Growth to an Upper Limit
$y = ae^{nt}$	$y = ae^{-nt}$	$y = a(1 - e^{-nt})$

Compound Interest

Doubling Time and Half-Life

 $y = a(1 + n)^{t} \qquad y = a\left(1 + \frac{n}{m}\right)^{mt} \qquad t = \frac{\ln 2}{n}$ $\log_{b} N = a \qquad b^{a} = N \qquad \log\left(\frac{M}{N}\right) = \log M - \log N$ $\log (M \cdot N) = \log M + \log N \qquad \log M^{n} = n \cdot \log M$

<u>CHAPTER 22:</u> Analytic Geometry

Straight Line

Distance formula.	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Equation of Straight line (General Form)	Ax + By + C = 0
Equation of Straight line (Slope-Intercept Form)	y = mx + b
Equation of Straight line (Point-slope Form)	$\mathbf{m} = \frac{y - y_1}{x - x_1}$
	or $y - y_1 = m(x - x_1)$
Equation of Straight line (Two-point form)	$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$
Intersection angle between two lines	$\tan \phi = \frac{m_2 - m_1}{1 + m_1 m_2}$
<u>Circle</u>	

Standard Equation (Circle of Radius r) Centre at (h, k)

$$(x-h)^2 + (y-k)^2 = r^2$$

<u>Parabola</u>

Standard Equation (Vertex at origin) Axis Horizontal	$y^2 = 4px$
Standard Equation (Vertex at origin) Axis Vertical	$x^2 = 4py$
Focal Width	L= 4p
Ellipse Standard Equation (Centre at origin) Major axis vertical	$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$
Standard Equation (Centre at origin) Major axis horizontal	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Distance from centre to focus.	$c = \sqrt{a^2 - b^2}$
Focal width (where <i>a</i> is semi-major axis)	$L = \frac{2b^2}{a}$
<u>Hyperbola</u>	
Standard equation (Trans. horizontal)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ slopes of asymptote $= \pm \frac{b}{a}$
Standard equation (Trans. vertical)	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ slopes of asymptote $= \pm \frac{a}{b}$

Distance from centre to focus

Focal Width

 $c = \sqrt{a^2 + b^2}$ $L = \frac{2b^2}{a}$