TMTH 205
FINAL EXAM FORMULA SHEET

CHAPTER 6: Geometry

NAME	FORMULA
Circle	Circumference $=2 \pi r$ or πd
	$\text { Area }=\pi r^{2} \text { or } \frac{\pi d^{2}}{4}$
Square	Perimeter $=4 s$
	Area $=s^{2}$
Rectangle	Perimeter $=2(l+w)$
	Area $=1 \cdot w$
Parallelogram	Perimeter $=2(a+b)$
	Area $=b \cdot h$
Rhombus	Perimeter $=4 \mathrm{~s}$
	Area $=s \cdot h$
Trapezoid	Perimeter $=a+b+c+d$
	$\text { Area }=\frac{(a+b) \cdot h}{2}$
Triangle	$\text { Area }=\frac{b \cdot h}{2}$
Hero's Formula	$\begin{aligned} & \text { Area }=\sqrt{s(s-a)(s-b)(s-c)} \text { where } \\ & s=\frac{a+b+c}{2} \end{aligned}$

NAME	FORMULA
Cube	Volume $=a^{3}$
	Surface Area $=6 a^{2}$
Rectangular Parallelepiped	Volume $=l w h$
Any cylinder or prism	Surface Area $=2(l w+h w+l h)$
Right cylinder or prism	Lateral Area $=($ perimeter of base $) \cdot($ altitude $)$ $($ not including bases $)$
Sphere	Volume $=\frac{4}{3} \pi r^{3}$
	Surface area $=4 \pi r^{2}$

Any cone or pyramid	Volume $=\frac{h}{3} \cdot($ area of base $)$ $\mathrm{h}=$ height of cone or pyramid
Right circular cone or regular pyramid	Lateral area $=\frac{s}{2} \cdot($ perimeter of base $)$ $\mathrm{s}=$ length of slant side
Frustum	Volume $=\frac{h}{3} \cdot\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\sqrt{A_{1} A_{2}}\right)$ $\mathrm{h}=$ height
Frustum	Lateral area $=\frac{s}{2} \cdot($ sum of base perimeters $)$ $=\frac{s}{2} \cdot\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right): \mathrm{s}=$ length of slant side

CHAPTER 18: Trigonometric Identities and Equations

$$
\begin{array}{lc}
\cot \theta=\frac{1}{\tan \theta} \quad \sec \theta=\frac{1}{\tan \theta} \quad \csc \theta=\frac{1}{\sin \theta} \quad \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta} \\
\sin ^{2} \theta+\cos ^{2} \theta=1 & 1+\tan ^{2}=\sec ^{2} \theta
\end{array}
$$

CHAPTER 20: Exponential and Logarithmic Functions

Growth

$y=a e^{n t}$

Decay

$y=a e^{-n t}$

Growth to an Upper Limit

$y=a\left(1-e^{-n t}\right)$

Compound Interest
$y=a(1+n)^{\mathrm{t}} \quad y=a\left(1+\frac{n}{m}\right)^{m t}$
$\log _{\mathrm{b}} \mathrm{N}=\mathrm{a} \quad \mathrm{b}^{\mathrm{a}}=\mathrm{N}$ $\log \left(\frac{M}{N}\right)=\log M-\log N$
$\log (\mathrm{M} \cdot \mathrm{N})=\log \mathrm{M}+\log \mathrm{N} \quad \quad \log \mathrm{M}^{\mathrm{n}}=\mathrm{n} \bullet \log \mathrm{M}$

CHAPTER 22: Analytic Geometry

Straight Line

Distance formula.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Equation of Straight line (General Form)
$A x+B y+C=0$
Equation of Straight line (Slope-Intercept Form)
Equation of Straight line (Point-slope Form)
$y=m x+b$
$\mathrm{m}=\frac{y-y_{1}}{x-x_{1}}$
or $y-y_{1}=m\left(x-x_{1}\right)$

Equation of Straight line (Two-point form)
$\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Intersection angle between two lines
$\tan \phi=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}$

Circle

Standard Equation (Circle of Radius r)
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Centre at (h, k)

Parabola

Standard Equation (Vertex at origin) Axis Horizontal

Standard Equation (Vertex at origin)

$$
x^{2}=4 p y
$$

Axis Vertical

Focal Width

Ellipse

Standard Equation (Centre at origin)

$$
y^{2}=4 p x
$$

$$
L=|4 p|
$$

Major axis vertical

Standard Equation (Centre at origin)

$$
\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1
$$

Major axis horizontal

Distance from centre to focus.

Focal width (where a is semi-major axis)

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
\begin{aligned}
& c=\sqrt{a^{2}-b^{2}} \\
& L=\frac{2 b^{2}}{a}
\end{aligned}
$$

Hyperbola

Standard equation (Trans. horizontal)

$$
\begin{array}{ll}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 & \text { slopes of asymptote }= \pm \frac{b}{a} \\
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1 & \text { slopes of asymptote }= \pm \frac{a}{b}
\end{array}
$$

Distance from centre to focus

$$
c=\sqrt{a^{2}+b^{2}}
$$

Focal Width

$$
L=\frac{2 b^{2}}{a}
$$

