TMTH 205 MIDTERM EXAM FORMULA SHEET

CHAPTER 13: Exponents and Radicals

Given positive real numbers x, y and integers m, n :
$\sqrt[n]{x^{m}}=(\sqrt[n]{x})^{m}=x^{m / n} \quad x^{0}=1$

$$
x^{-n}=\frac{1}{x^{n}}
$$

$\left(x^{m}\right)^{n}=x^{m n}$
$x^{m} \cdot x^{n}=x^{m+n}$
$\frac{x^{m}}{x^{n}}=x^{m-n}$
$(x y)^{n}=x^{n} y^{n}$
$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$

$$
\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}
$$

CHAPTER 14: Quadratic Equations
Quadratic Formula If $a x^{2}+b x+c=0$ and $a \neq 0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

CHAPTER 19: Ratio, Proportion and Variation
Direct Variation $\quad y=k x \quad$ or $\quad \frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}}$
Power Variation $\quad y=k x^{n} \quad$ or $\frac{y_{2}}{y_{1}}=\frac{\left(x_{2}\right)^{n}}{\left(x_{1}\right)^{n}}$
Inverse Variation $\quad y=\frac{k}{x} \quad$ or $\quad \frac{y_{2}}{y_{1}}=\frac{x_{1}}{x_{2}}$
Joint Variation $\quad y=k x w$

CHAPTER 22: Analytic Geometry

Distance formula $\quad d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Straight Line:

Slope:

- given two points on line is $m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
- given angle of inclination is $m=\tan (\theta)$
- for parallel lines: $m_{1}=m_{2}$
- for perpendicular lines: $m_{1}=-\frac{1}{m_{2}}$

Angle of inclination:

- $\theta=\tan ^{-1} m$ if slope m is nonnegative
- $\theta=\tan ^{-1} m+180^{\circ}$ if slope m is negative

Angle of intersection between two lines $\tan \phi=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}$
Forms of equations for straight lines:

- General Form

$$
A x+B y+C=0
$$

- Slope-Intercept Form $y=m x+b$
- Point-Slope Form $\quad y-y_{1}=m\left(x-x_{1}\right)$
- Two-point Form $\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Circle:

Circle of radius r and centre $(h, k): \quad(x-h)^{2}+(y-k)^{2}=r^{2}$

Parabola:

Vertex at origin, Axis Horizontal $\quad y^{2}=4 p x$
Vertex at origin, Axis Vertical

$$
x^{2}=4 p y
$$

Focal Width

$$
L=|4 p|
$$

Ellipse:

Centre at origin, Major Axis Vertical $\quad \frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$
Centre at origin, Major Axis Horizontal $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Distance from centre to focus $\quad c=\sqrt{a^{2}-b^{2}}$
Focal Width (where a is semi-major axis) $\quad L=\frac{2 b^{2}}{a}$

Hyperbola:

Transverse Axis Horizontal $\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ slopes of asymptotes $= \pm \frac{b}{a}$
Transverse Axis Vertical $\quad \frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1 \quad$ slopes of asymptotes $= \pm \frac{a}{b}$
Distance from centre to focus $\quad c=\sqrt{a^{2}+b^{2}}$

Focal Width

$$
L=\frac{2 b^{2}}{a}
$$

