TMTH 135

FINAL EXAM FORMULA SHEET

CHAPTER 1: Numerical Computation

Distance $=$ Rate \times Time (where rate is in decimal form)
Amount $=$ Rate \times Base $\quad($ where rate is in decimal form $)$
$\%$ change $=\frac{\text { New Value }- \text { Original Value }}{\text { Original Value }} \times 100$
$\%$ error $=\frac{\text { Measured Value }- \text { Known Value }}{\text { Known Value }} \times 100$
$\%$ efficiency $=\frac{\text { Output }}{\text { Input }} \times 100$
\% concentration of $A=\frac{\text { Amount of } A}{\text { Total Amount of Mixture }} \times 100$

CHAPTER 2: Algebra

$(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$
$(a-b)(a+b)=a^{2}-b^{2}$
Given nonzero real numbers x and y, and integers m and n :

$$
\begin{array}{lll}
x^{1}=x & x^{0}=1 & x^{-n}=\frac{1}{x^{n}} \\
\left(x^{m}\right)^{n}=x^{m n} & x^{m} \cdot x^{n}=x^{m+n} & \frac{x^{m}}{x^{n}}=x^{m-n} \\
(x y)^{n}=x^{n} y^{n} & \left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}} & \left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}
\end{array}
$$

CHAPTER 7: Right Triangles and Vectors

$$
\begin{aligned}
& 1 \mathrm{rev}=360^{\circ}=2 \pi \text { radians } \\
& 1 \text { radian }=57.3^{\circ} \\
& c^{2}=a^{2}+b^{2} \\
& \sin \theta=\frac{o p p}{h y p} \\
& \cos \theta=\frac{a d j}{h y p} \\
& \tan \theta=\frac{o p p}{a d j} \\
& \csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
\end{aligned}
$$

CHAPTER 11: Determinants (For a system of two linear equations)

Second Order Determinant: $\quad\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}$
General Form of System of Two Linear Equation: $\begin{aligned} & a_{1} x+b_{1} y=c_{1} \\ & a_{2} x+b_{2} y=c_{2}\end{aligned}$
Cramer's Rule: $\quad x=\frac{\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|} \quad$ and $\quad y=\frac{\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}$

CHAPTER 14: Quadratic Equations

General Form of a Quadratic: $\quad a x^{2}+b x+c$
Quadratic Formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

CHAPTER 15: Oblique Triangles and Vectors

$\sin \theta=\sin \left(180^{\circ}-\theta\right) \quad \cos \theta=\cos \left(360^{\circ}-\theta\right) \quad \tan \theta=\tan \left(180^{\circ}+\theta\right)$
Law of Sines: $\quad \frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
Law of Cosines: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos (A) \quad \cos (A)=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos (B) \\
& c^{2}=a^{2}+b^{2}-2 a b \cos (C)
\end{aligned}
$$

$$
\cos (\mathrm{B})=\frac{a^{2}+c^{2}-b^{2}}{2 a c}
$$

$$
\cos (\mathrm{C})=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

CHAPTER 16: Radian Measure, Arc Length and Rotation

Central Angle: $\quad \boldsymbol{\theta}=\frac{\boldsymbol{s}}{\boldsymbol{r}}$
Arc Length: $\quad \boldsymbol{s}=\boldsymbol{\theta r} \quad$ (where $\boldsymbol{\theta}$ is in radians)

CHAPTER 19: Ratio, Proportion and Variation

Direct Variation: $y=k x \quad$ Inverse Variation: $y=\frac{k}{x}$

$$
\text { or } \frac{y_{2}}{y_{1}}=\frac{x_{2}}{x_{1}} \quad \text { or } \quad \frac{y_{2}}{y_{1}}=\frac{x_{1}}{x_{2}}
$$

Joint Variation: $\quad y=k x w$

Power Function: $\quad y=k x^{b} \quad$ where $\quad \begin{array}{ll}\text { For } b=2: y=k x^{2} \\ & \text { For } b=3: y=k x^{3} \\ & \text { For } b=-2: y=\frac{k}{x^{2}}\end{array}$

