<u>TMTH 135</u> FINAL EXAM FORMULA SHEET

<u>CHAPTER 1</u>: Numerical Computation

Distance = Rate \times Time (where rate is in decimal form)

Amount = Rate \times Base (where rate is in decimal form)

% change = $\frac{\text{New Value - Original Value}}{\text{Original Value}} \times 100$

% error = $\frac{\text{Measured Value - Known Value}}{\text{Known Value}} \times 100$

% efficiency = $\frac{\text{Output}}{\text{Input}} \times 100$

% concentration of $A = \frac{Amount of A}{Total Amount of Mixture} \times 100$

<u>CHAPTER 2:</u> Algebra

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

 $(a - b)(a + b) = a^2 - b^2$

Given nonzero real numbers *x* and *y*, and integers *m* and *n*:

$$x^{1} = x \qquad x^{0} = 1 \qquad x^{-n} = \frac{1}{x^{n}}$$
$$(x^{m})^{n} = x^{mn} \qquad x^{m} \cdot x^{n} = x^{m+n} \qquad \frac{x^{m}}{x^{n}} = x^{m-n}$$
$$(xy)^{n} = x^{n}y^{n} \qquad \left(\frac{x}{y}\right)^{n} = \frac{x^{n}}{y^{n}} \qquad \left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^{n}$$

<u>CHAPTER 7:</u> Right Triangles and Vectors

1 rev =
$$360^\circ = 2\pi$$
 radians
1 radian = 57.3°
 $c^2 = a^2 + \cos^2\theta = \frac{adj}{hyp}$
 $\cos^2\theta = \frac{adj}{hyp}$
 \cos

<u>CHAPTER 11:</u> Determinants (For a system of two linear equations)

Second Order Determinant:

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

General Form of System of Two Linear Equation:

 $a_1 x + b_1 y = c_1$ $a_2 x + b_2 y = c_2$

 b^2

Cramer's Rule:
$$x = \frac{\begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$
 and $y = \frac{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$

<u>CHAPTER 14:</u> Quadratic Equations

General Form of a Quadratic: $ax^2 + bx + c$ Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

CHAPTER 15: Oblique Triangles and Vectors

$\sin\theta = \sin(180^\circ -$	θ) $\cos \theta = \cos(360^\circ - \theta)$	$\tan\theta = \tan(180^\circ + \theta)$
Law of Sines:	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$	
Law of Cosines:	$a^2 = b^2 + c^2 - 2bc\cos(A)$	$\cos(A) = \frac{b^2 + c^2 - a^2}{2bc}$
	$b^2 = a^2 + c^2 - 2ac\cos(B)$	$\cos(B) = \frac{a^2 + c^2 - b^2}{2ac}$
	$c^2 = a^2 + b^2 - 2ab\cos(C)$	$\cos(C) = \frac{a^2 + b^2 - c^2}{2ab}$

<u>CHAPTER 16:</u> Radian Measure, Arc Length and Rotation

Central Angle:	$\theta = \frac{s}{r}$	
Arc Length:	$s = \theta r$	(where $\boldsymbol{\theta}$ is in radians)

<u>CHAPTER 19:</u> Ratio, Proportion and Variation

Direct Variation:	y = k x		Inverse Variation:	$y = \frac{\kappa}{x}$	
or	$\frac{y_2}{y_1} = \frac{x_2}{x_1}$		or	$\frac{y_2}{y_1} = \frac{x_1}{x_2}$	
Joint Variation:	y = k x w				
Power Function:	$y = k x^{b}$	where	For $b = 2$: y For $b = 3$: y For $b = -2$:	For b = 2: $y = k x^{2}$ For b = 3: $y = k x^{3}$ For b = -2: $y = \frac{k}{x^{2}}$	

,