

1 Exponents Tutorial

1.1 Notation

Write in either exponent form or as a repeated multiplication

$$1)$$
 $2 \times 2 \times 2$

2)
$$5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$$

$$3) 6^4$$

$$4) 10^2$$

Note:

When you have a repeated multiplication, you put the number of times you multiply as the exponent. For example: $3 \times 3 \times 3 \times 3 = 3^4$

1.2 Multiplication Law

5)
$$x^3 \times x^2$$

6)
$$g^{-1} \times g^{-5} \times g \times g^{5}$$

7)
$$t^2 \times t^6$$

8)
$$c^2 \times c^2 \times c^2$$

9)
$$a^3 \times b^2$$

10)
$$h \times k^2$$

11)
$$(m^{-4})(n^{12})(m^{10})$$

12)
$$a^3 \times b^9 \times c^4$$

Note:

When we are multiplying two numbers with the same base, you can add the exponents. For example: $a^3 \times a^2 = a^{3+2} = a^5$

Note:

When we are multiplying two numbers that <u>DO</u> <u>NOT</u> have the same base, we <u>CANNOT</u> add the bases.

1.3 Division Law

13)
$$\frac{x^{10}}{x^9}$$

14)
$$\frac{a^2}{a^{10}}$$

15)
$$z^4 \div z^2$$

16)
$$\frac{c^3}{c^5}$$

17)
$$\frac{e^{-1}}{e^2}$$

18)
$$\frac{b^{-3}}{b^{-5}}$$

19)
$$t^9 \div t^5$$

20)
$$a^3 \div b^2$$

21)
$$\frac{h^4}{k^9}$$

22)
$$d^4 \div e^5$$

23)
$$j^5 \div \frac{k^4}{g^2}$$

Note:

If two exponential numbers are being divide and they have the same, we subtract the exponent in the numerator by the exponent in the denominator. For example: $\frac{x^8}{x^5} = x^{8-5} = x^3$

Note:

When we are dividing two numbers that \underline{DO} \underline{NOT} have the same base, we \underline{CANNOT} subtract the bases.

Power Law 1.4

- $(a^2)^3$
- $(v^3)^3$
- $26) (6^2)^4$
- 27) $2(m^5)^4$
- 28) $(p^2q)^3$
- 29) $(de)^7$
- $30) \left(\frac{1}{u}\right)^{19}$

Inverse Law 1.5

- 31) a^{-3}
- $32) (k^{-1})^{-1}$
- 33) $(g^{-2})^{-4}$
- 34) k^{-3}
- $35) \frac{1}{h^{-2}}$
- 36) $\left(\frac{a^3b^{-5}c^4}{x^3y^{-5}z^4}\right)^{-1}$

2 Using all the Laws

- $37) \left(\frac{6m^3x^0}{3m^2n^3}\right)^{-2}$
- 38) $(-5x^{-5})(2xy^7)(-y^3)^2$
- $39) \frac{-x^{12}}{9y^9z^3} \times \frac{-12y^{-3}}{-x^{11}}$
- 40) $\frac{12a^3}{5k^2} \times \frac{15a}{k}$
- 41) $\left(\frac{a^4b^3}{c^3}\right)\left(\frac{b^2c^3}{a^4}\right)\left(\frac{a^4c^3}{b^2}\right)$
- 42) $\frac{(2x^2)^4}{9y^2z^2} \times \frac{(3yz)^2}{(4x^4)^2}$
- 43) $\left(\frac{7}{-p^5 a}\right)\left(\frac{-9p^3q^8}{14}\right)$
- 44) $(-3m^2 \div 7n^4) \times (2n \div m)$
- $(45) \left(\frac{s^{-3}t}{c^4}\right)^{-2}$
- 46) $\frac{x^3y^5}{6} \times \frac{x^{-2}z^2}{3} \times \frac{y^{-3}}{2}$
- 47) $\left(\frac{3x^{12}y^8z^4}{v^{15}w^7}\right)^0$
- 48) $(x^{-2}y^2)^{-2}$

Note:

When we are taking the power of a base that already has an exponent, we multiply the two exponents. For example: $(a^4)^2 = a^{4\times 2} = a^8$

Note:

When we have two terms that are both being brought the power of some number, then we must being both term to that power. For example: $(3a^4)^2 = 3^2 \times (a^4)^2 = 9a^8$

Note:

When the exponent is a negative we place the base and the exponent at the bottom of a fraction. For example: $a^{-1} = \frac{1}{a}$

Answers/Solutions

- 1) 2^3
- $2) 5^7$
- 3) $6 \times 6 \times 6 \times 6$
- 4) 10×10
- 5) x^5
- 6) g^0 or 1
- 7) t^{8}
- 8) c^6
- 9) $a^3 \times b^2$
- 10) hk^2
- 11) $(m^6)(n^{12})$
- 12) $a^3 \times b^9 \times c^4$
- 13) x^1 or x
- 14) a^{-1}
- 15) z^2
- 16) $\frac{1}{c^2}$ or c^{-2}
- 17) $\frac{1}{e^3}$ or e^{-3}
- 18) b^2
- 19) t^4
- 20) $\frac{a^3}{b^2}$
- 21) $\frac{h^4}{k^9}$
- 22) $\frac{d^4}{e^5}$
- $23) \ \frac{j^4 \times g^2}{k^4}$

- 24) a^6
- 25) v^9
- $26) 6^8$
- 27) $2m^20$
- 28) p^6q^3
- 29) d^7e^7
- $30) \frac{1}{y^{19}}$
- 31) $\frac{1}{a^3}$
- 32) -k
- 33) g^8
- $34) \frac{1}{k^3}$
- 35) h^2
- 36) $\frac{a^{-3}b^5c^{-4}}{x^{-3}y^5z^{-4}}$ or $\frac{x^3b^5z^4}{a^3y^5c^4}$
- 37) $\frac{n^6}{4m^2}$
- 38) $\frac{-10y^{13}}{x^4}$
- $39) \frac{-4x}{3y^{12}z^3}$
- $40) \frac{36a^4}{b^3}$
- 41) $a^4b^3c^3$
- 42) 1
- 43) $\frac{9q^7}{2p^2}$
- 44) $\frac{-6m}{7n^3}$
- 45) $\frac{s^6c^8}{t^2}$
- 46) $\frac{xy^2z^2}{36}$
- 47) 1
- 48) $\frac{x^4}{y^4}$