# Comparison of ATSC 3.0 and 5G Broadcast: Performance and Network Expense

# Dr. Sung-Ik Park, IEEE Fellow

ETRI Project Leader (ATSC 3.0, FeMBMS, SFN, MATV, others)

Distinguished Lecturer, IEEE BTS (Broadcasting Technology Society)

### Why ATSC 3.0 for Terrestrial Broadcast?

- ATSC 3.0 PHY is purpose-built for broadcast
- Superior over current 3GPP MBMS solutions for downlink broadcast/multicast
- Significant network expense (CAPEX and OPEX) savings
- Very compelling case to add to a future 3GPP release
- This presentation includes a performance comparison with 5G-Broadcast (3GP P Rel-16/17), a.k.a FeMBMS



#### ATSC 3.0 Status in S. Korea

➤ ATSC 3.0 delivering 4K-UHD started in Seoul metro area (May 2017), extended to major cities (Dec. 2017), and will be nationwide by 2025

➤ New frequency bands in 700 MHz were assigned for ATSC 3.0 (Simulcasting: ~ 2027)



➤ Successfully demonstrated high quality mobile broadcast + 4K-UHD in a single RF channel for 2018 Winter Olympics (PyeongChang)

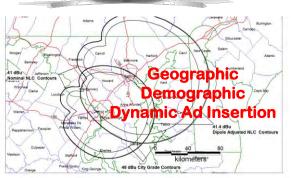


ATSC 3.0 mobile receiver installed in a shuttle bus over Olympic village



Inside the bus introduced by WRAL-TV (U.S.)




#### ATSC 3.0 Status in S. Korea

#### **Enhanced TV**





Quality



#### **Datacasting**

Multimedia Files

#### **Navigation Updates**





**Apps and Data** 

# Convergence







#### ATSC 3.0 Status in S. Korea - Consumer Devices

TV





In Korea, all Samsung and LG UHDTV (manufactured after 2017) are ATSC 3.0 ready!!





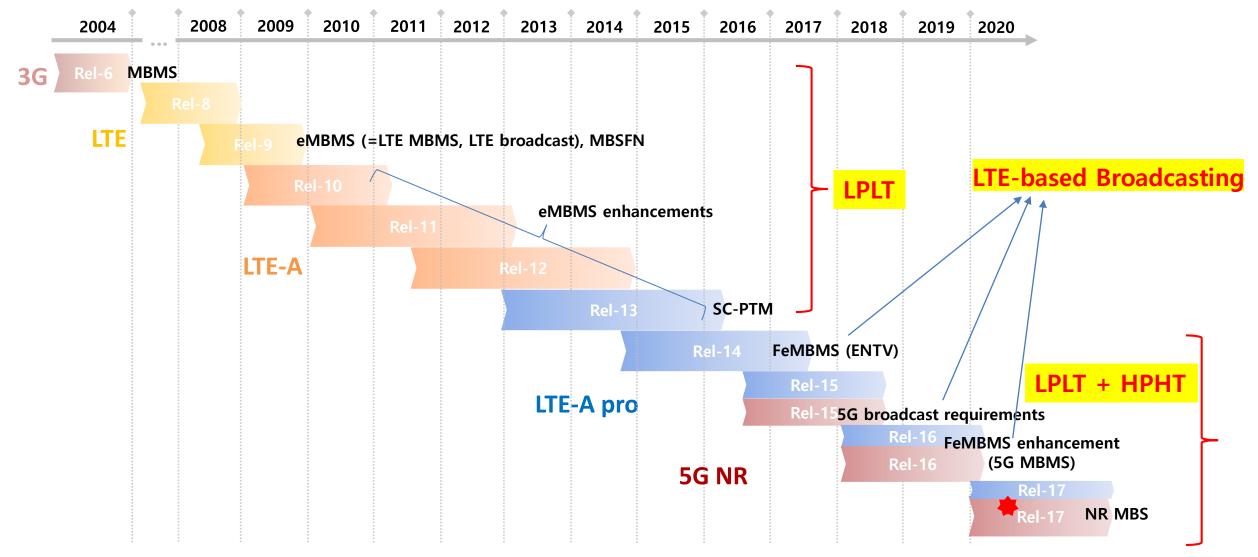




#### **Others**

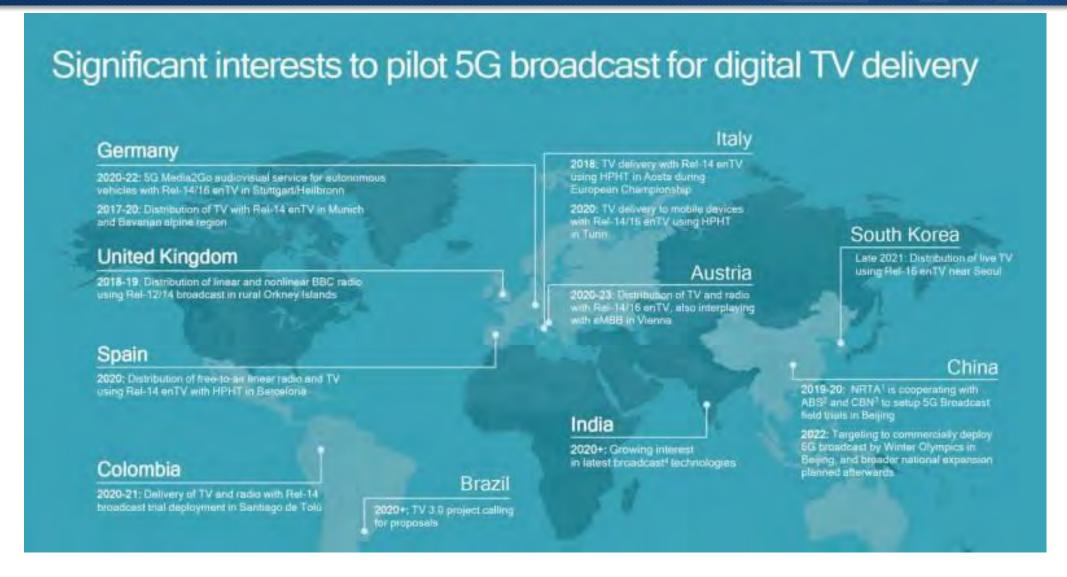


- Dongle receiver for existing device
- Home gateway for WiFi re-distribution



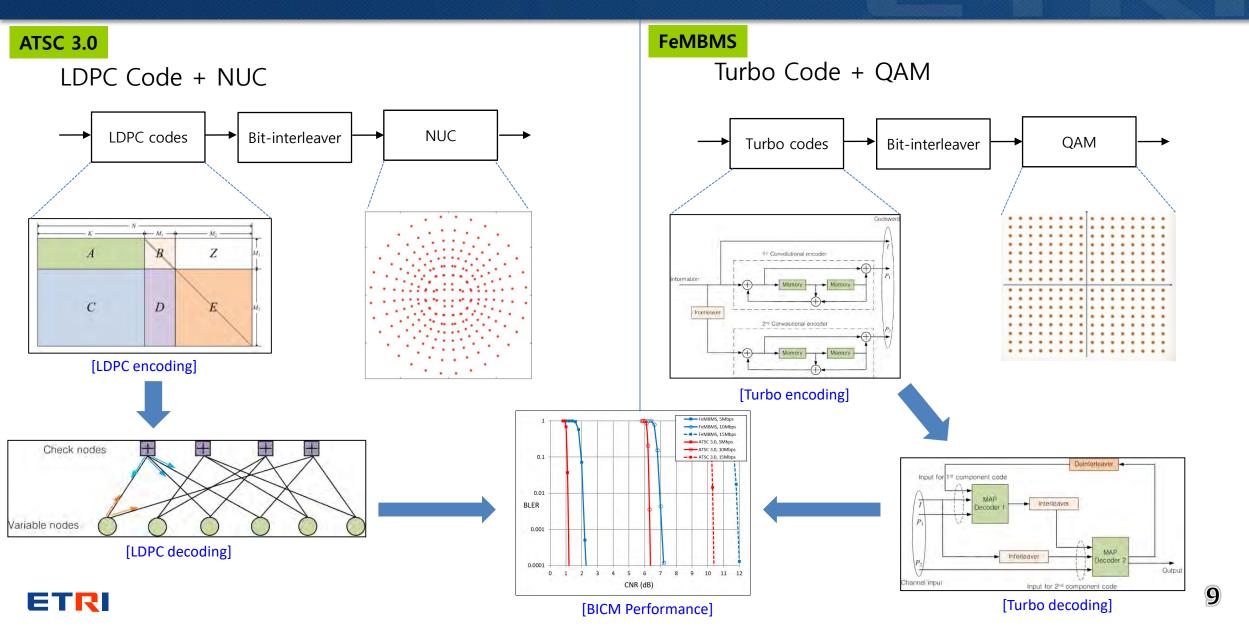

### MBMS: Broadcasting Services in 3GPP

- > Broadcasting technologies in cellular-based mobile broadband (3GPP)
  - Starting from LPLT-based point-to-point service
  - Extended to HPHT-based infrastructure for a larger coverage
- > MBMS (Multimedia Broadcast and Multicast Service ) features
  - Possible to efficiently deliver the same contents (i.e., popular contents: live news and sports) to massive subscribers based Point-to-multipoint (P-to-MP) versus Unicast
  - Possible to deliver the same contents to wider coverage due to SFN




### MBMS: History from 3G to 5G

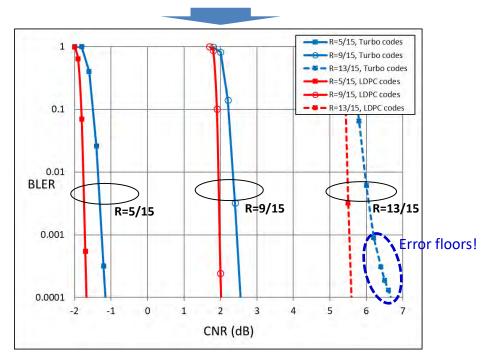


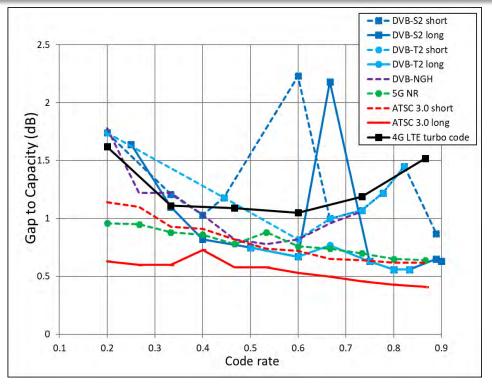



#### **MBMS: 5G-Broadcast Trials**






### BICM (Bit-Interleaved Coded Modulation)




### BICM (Bit-Interleaved Coded Modulation)

#### LDPC code vs Turbo code

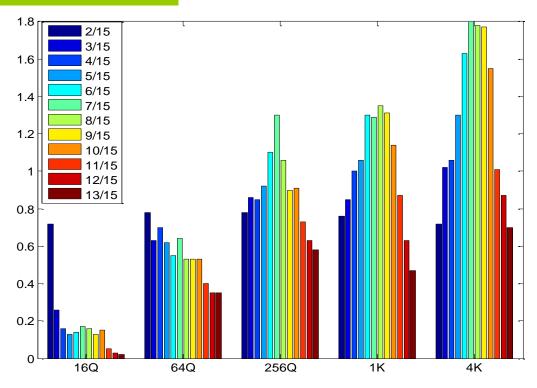
|                 | ATSC 3.0 LDPC codes                     | FeMBMS Turbo codes                                                   |
|-----------------|-----------------------------------------|----------------------------------------------------------------------|
| Optimized       | Delicately optimized for each code rate | Originally for 1/3,<br>Puncturing is used for<br>variable code rates |
| Codeword length | Up to code bits 64,800                  | Up to information bits 6144                                          |
| Error floor     | Free                                    | Sometimes, it happens                                                |





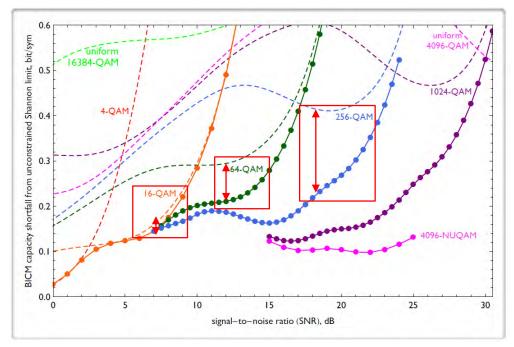
[Performance: ATSC 3.0 LDPC codes vs other DTT standards]

- ATSC 3.0 LDPC codes outperform other wireless broadcasting/communication standards
- ATSC 3.0 LDPC codes are less than 1 dB away from Shannon Capacity


K.-J. Kim *et al.*, "Low-Density Parity-Check Codes for ATSC 3.0." in *IEEE Trans. on Broadcasting*, vol. 62, no. 1, pp. 189-196, March 2016.



<sup>196,</sup> March 2016.


### BICM (Bit-Interleaved Coded Modulation)

#### **NUC vs QAM**



[Performance: gain of ATSC 3.0 NUC over rectangular QAM]

- ATSC 3.0 NUCs outperform rectangular QAMs
- NUC gain increases when modulation order increases



[Shortfall of the BICM capacity from the Shannon capacity, NUC and QAM]<sup>[1]</sup>

Performance of BICM chain is bounded by its BICM capacity.


- → NUC is closer to BICM capacity than rectangular QAM
- NUC gain increases when modulation order increases



### Performance Comparison over AWGN channel

#### Evaluation over AWGN channel

|                              | Required CNR (5Mbps) | Required CNR (10Mbps) | Required CNR (15Mbps) |
|------------------------------|----------------------|-----------------------|-----------------------|
| ATSC 3.0                     | 1.2dB                | 6.4dB                 | 10.4dB                |
| FeMBMS (Rel-16/17)           | 2.3dB                | 7.3dB                 | 12.1dB                |
| ATSC 3.0 gain<br>over FeMBMS | 1.1dB                | 0.9dB                 | 1.7dB                 |



ATSC 3.0 has a better BICM (bit-interleaved coded

modulation) efficiency than FeMBMS. In the

AWGN channel, ATSC 3.0's latest LDPC codes and

NUC (non-uniform constellation) combination

provides around 1 – 2 dB gain compared to turbo

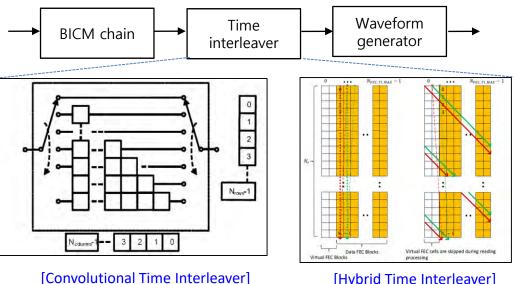
codes and rectangular QAM of FeMBMS.

In terms of BICM, ATSC 3.0 is less than 1 dB away

from Shannon Capacity.



#### Time Interleaver


#### ATSC 3.0 w. Time Interleaver

ATSC 3.0's well-designed and optimized

time-interleaver provides significant

performance benefit over harsh fading

ATSC 3.0 PHY is designed to provide uniform performance under harsh mobile fading channels. → Time interleaver is an appropriate solution.



[Hybrid Time Interleaver]

#### **Time Interleaver**

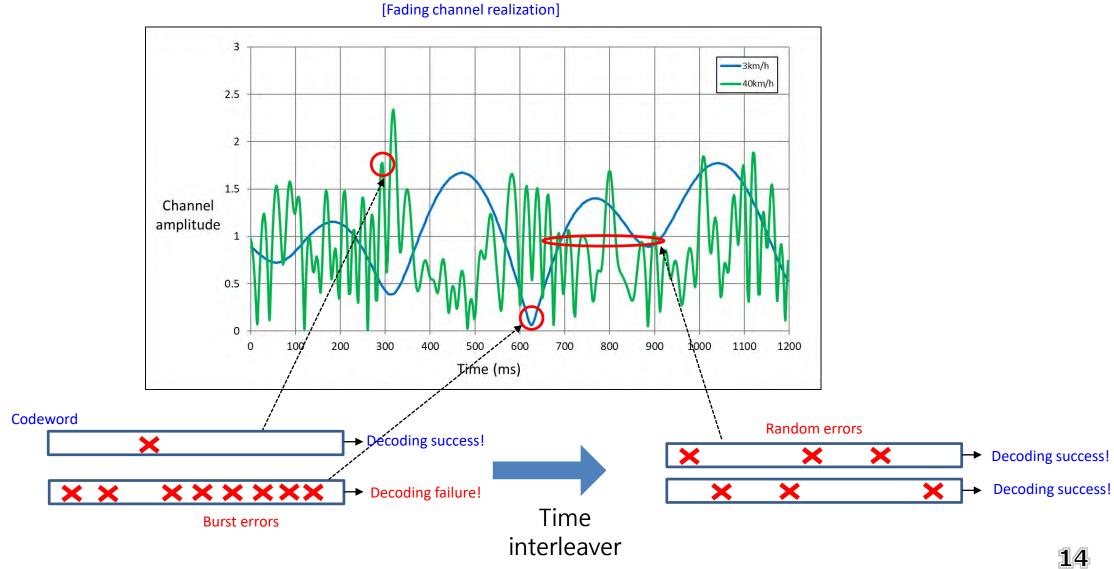
Time interleaver spreads burst errors, caused by harsh fading channel, to random errors so that a receiver can make it decode successfully.



#### **FeMBMS w.o. Time Interleaver**

LTE PHY (FeMBMS) is designed to minimize latency for supporting latency requirements of unicast transmission. → Time interleaver is not allowed in LTE PHY layer.

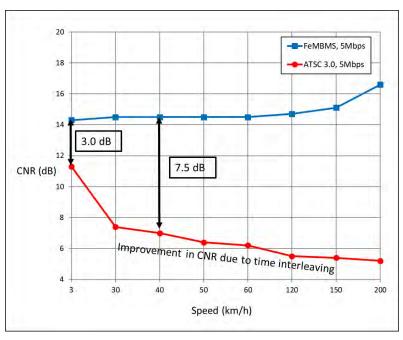


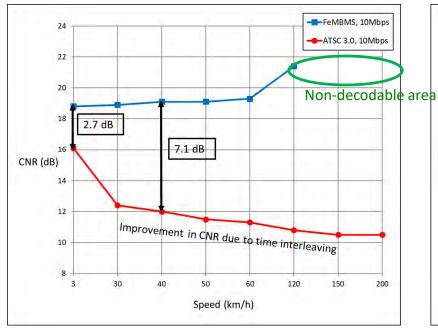


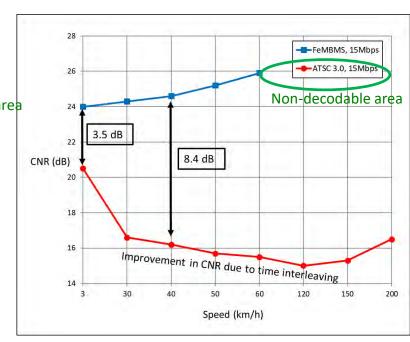

environments.

[Fading Performance]

BLER


#### Time Interleaver




### Time Interleaver Effect over India-Urban channel

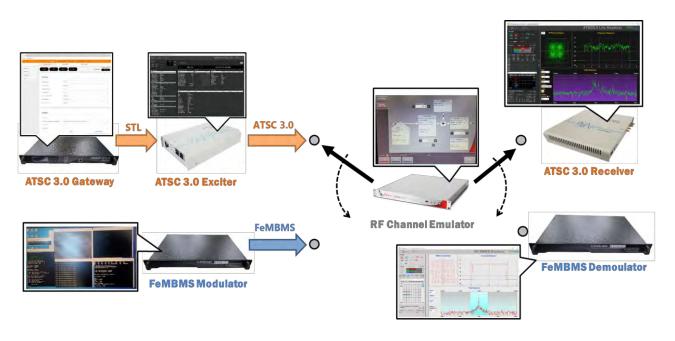
Advantage for ATSC 3.0 compared to FeMBMS (Rel-16/17)







[5Mbps – From 3km/h to 200km/h]


[10Mbps - From 3km/h to 200km/h]

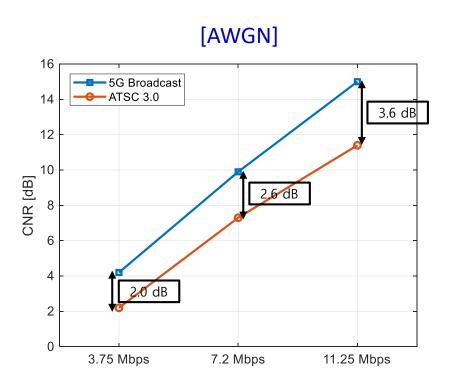
[15Mbps - From 3km/h to 200km/h]

| Data rate / | ATSC 3.0 gain over FeMBMS (Rel-16/17) |        |        |        |         |         |                 |             |
|-------------|---------------------------------------|--------|--------|--------|---------|---------|-----------------|-------------|
| Mobility    | 3km/h                                 | 30km/h | 40km/h | 50km/h | 60km/h  | 120km/h | 150km/h         | 200km/h     |
| 5Mbps       | 3.0 dB                                | 7.1 dB | 7.5 dB | 8.2 dB | 8.3 dB  | 9.2 dB  | 9.7 dB          | 11.4 dB     |
| 10Mbps      | 2.7 dB                                | 6.6 dB | 7.1 dB | 7.6 dB | 8.0 dB  | 10.7 dB | FeMBMS no       | n-decodable |
| 15Mbps      | 3.5 dB                                | 7.7 dB | 8.4 dB | 9.5 dB | 10.4 dB | FeM     | IBMS non-decoda | able        |



[HW-based Laboratory Test] ATSC 3.0 Subframe vs. 5G Broadcast PMCH → 6MHz BW, 768MHz CF, India-Urban/TU-6 channel




[HW-based Laboratory Environment]

| Configuration<br>/ Mobility |        | ATSC 3.0 gain over 5G Broadcast (Rel-16/17) |                                   |                                   |  |
|-----------------------------|--------|---------------------------------------------|-----------------------------------|-----------------------------------|--|
|                             |        | 3.75 Mbps 7.5 Mbps                          |                                   | 11.25 Mbps                        |  |
| Urban                       | 3km/h  | 8.0 dB                                      | 5G Broadcast<br>non-<br>decodable | 5G Broadcast<br>non-<br>decodable |  |
| India-Urban                 | 40km/h | 9.8 dB                                      | 9.5 dB                            | 5G Broadcast<br>non-<br>decodable |  |
| 9-                          | 3km/h  | 4.5 dB                                      | 6.3 dB                            | 5G Broadcast<br>non-<br>decodable |  |
| P-UT                        | 40km/h | 10.3 dB                                     | 9.7 dB                            | 5G Broadcast<br>non-<br>decodable |  |

[Performance Comparison between ATSC 3.0 and 5G Broadcast]



[HW-based Laboratory Test] ATSC 3.0 Subframe vs. 5G Broadcast PMCH -> 6MHz BW, 768MHz CF, AWGN/India-Urban/TU-6 channel



#### [India-Urban/TU-6]

|                             | ATSC 3.0 gain over 5G Broadcast (Rel-16/17) |                               |                               |                               |
|-----------------------------|---------------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Configuration /<br>Mobility | India-Urban                                 |                               | TU-6                          |                               |
|                             | 3km/h                                       | 40km/h                        | 3km/h                         | 40km/h                        |
| 3.75 Mbps                   | 8.0 dB                                      | 9.8 dB                        | 4.5 dB                        | 10.3 dB                       |
| 7.5 Mbps                    | 5G Broadcast<br>non-decodable               | 9.5 dB                        | 6.3 dB                        | 9.7 dB                        |
| 11.25 Mbps                  | 5G Broadcast<br>non-decodable               | 5G Broadcast<br>non-decodable | 5G Broadcast<br>non-decodable | 5G Broadcast<br>non-decodable |

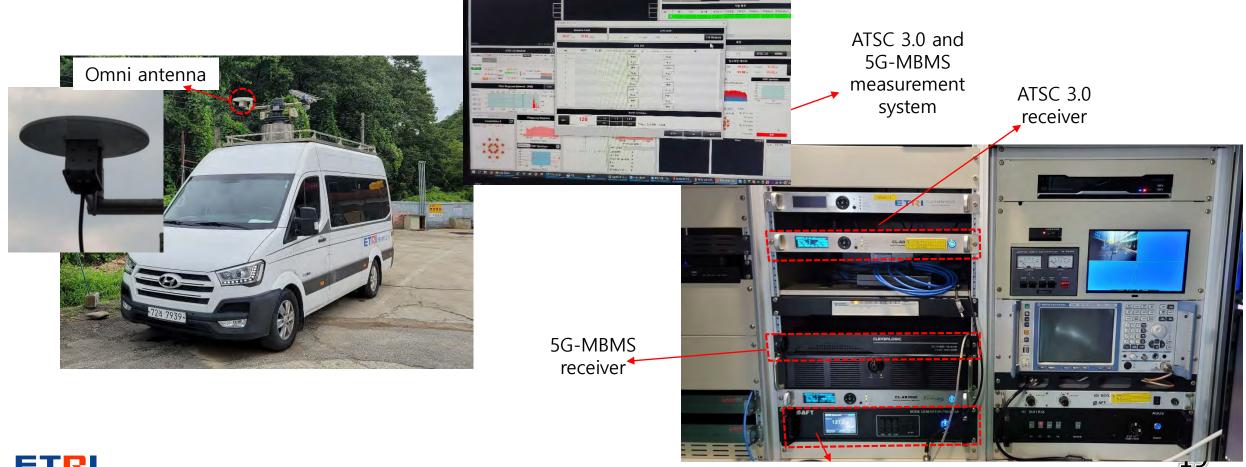


Transmitter Facilities for ATSC 3.0 and 5G-MBMS Field Trial in 2022



<Building & Tower >




<Gateway & Tx Controller>



< 5G MBMS and ATSC 3.0 Transmitter > Center Frequency : 768MHz (BW:6MHz) Transmission power : 100W



- Receiver (Test Vehicle) Facilities for ATSC 3.0 and 5G-MBMS Field Trial in 2022
  - For both fixed and mobile reception





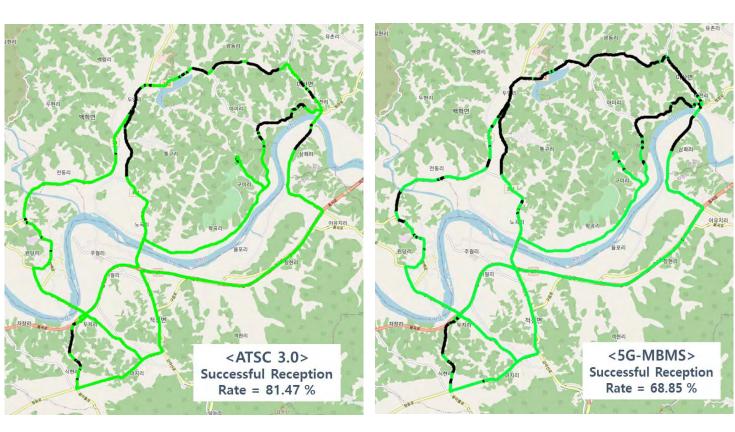
Noise Signal Generator

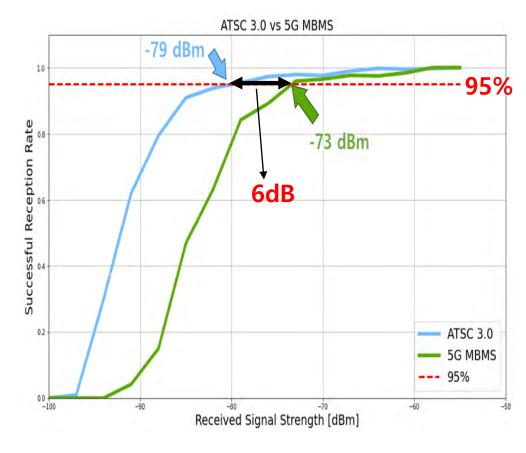
ATSC 3.0

6MHz is used (instead of 8MHz)

5G-MBMS

| Common Configuration (ATSC 3.0) |                       |                          |  |  |
|---------------------------------|-----------------------|--------------------------|--|--|
| Center frequency                |                       | 768 MHz                  |  |  |
| Bandwidth                       |                       | 6MHz                     |  |  |
| Common                          | FFT size              | 8192                     |  |  |
| parameters                      | <b>Guard interval</b> | GI7_2048 (222.22 us)     |  |  |
| Preamble parameters             | Pilot Pattern         | SP_Dx = 3                |  |  |
|                                 | Signaling Protection  | L1-Basic/Detail mode 1   |  |  |
|                                 | Pilot pattern         | SP3_2                    |  |  |
| Payload OFDM                    | # of payload symbols  | 222                      |  |  |
| parameters                      | Time interleaver      | CTI with a depth of 1024 |  |  |
|                                 | Frequency interleaver | On                       |  |  |
| Frame length                    |                       | 250.8889 ms              |  |  |


|               | Configuration 1   | Configuration 2   | Configuration 3   |
|---------------|-------------------|-------------------|-------------------|
| Outer code    | 8/15-LDPC (64800) | 8/15-LDPC (64800) | 8/15-LDPC (64800) |
| Constellation | QPSK              | 16-NUC            | 64-NUC            |
| Data rate     | 4.03 Mbps         | 8.06 Mbps         | 12.09 Mbps        |


| Common Configuration (5G-MBMS) |                                                 |  |  |  |
|--------------------------------|-------------------------------------------------|--|--|--|
| Center frequency               | 768 MHz                                         |  |  |  |
| Bandwidth                      | 6MHz (30RBs)                                    |  |  |  |
| FFT size                       | 12288                                           |  |  |  |
| <b>Guard interval</b>          | 200us                                           |  |  |  |
| Pilot pattern                  | SP3_2                                           |  |  |  |
| Subcarrier spacing             | 1.25KHz                                         |  |  |  |
| MCS table                      | Table 7.1.7.1-1 (TS 36.213)<br>Max 64-QAM table |  |  |  |

|               | Configuration 1 | Configuration 2 | Configuration 3 |
|---------------|-----------------|-----------------|-----------------|
| MCS index     | 8               | 14              | 20              |
| TBS           | 4264            | 7736            | 11832           |
| Code rate     | 0.58            | 0.54            | 0.553           |
| Constellation | QPSK            | 16-QAM          | 64-QAM          |
| Data rate     | 4.16 Mbps       | 7.54 Mbps       | 11.54 Mbps      |

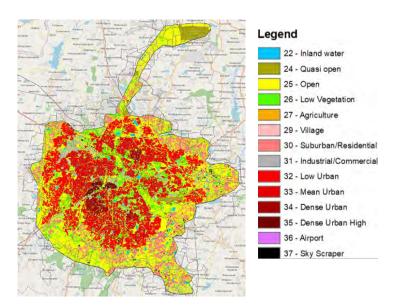


[Field Test] ATSC 3.0 Subframe vs. 5G Broadcast PMCH → 6MHz BW, 768MHz CF, 5Mbps

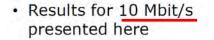


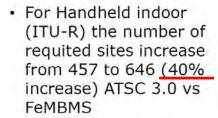


[Reception Success or Failure @ 5Mbps]

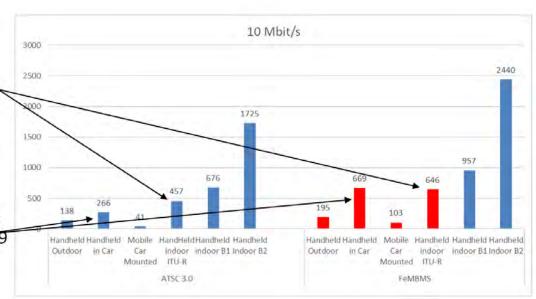

[ESR5 @ 5Mbps]




### **Network Cost Comparison**


#### System eligibility – Network cost

- ✓ ATSC 3.0 and FeMBMS physical-layers are compared in terms of network cost.
- ✓ Network expense (CAPEX & OPEX) can be abstracted in terms of the number of operational towers.



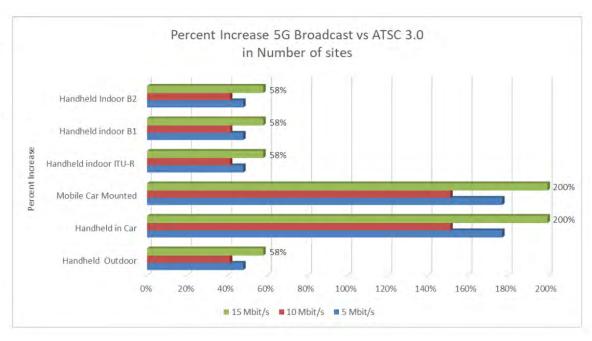

[Considered service area in Bangalore, India]





 For Handheld in Car reception the increase is about 150 % (266 to 669 sites)

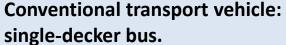



[Theoretical Study: Bangalore, Results]



### **Network Cost Comparison**

#### System eligibility – Network cost


- ✓ Given the target service area and QoS, ATSC 3.0 is more efficient solution in terms of network operation than FeMBMS.
  - For handheld indoor reception the FeMBMS (5G Broadcast) will require 40-60% more sites
  - For mobile reception the increase in number of sites required for FeMBMS is 140-200%. The reason for the large difference is lack of that time interleaving in 5G Broadcast Release 16/17
  - In General 5 dB difference in required C/N will double number of required sites!



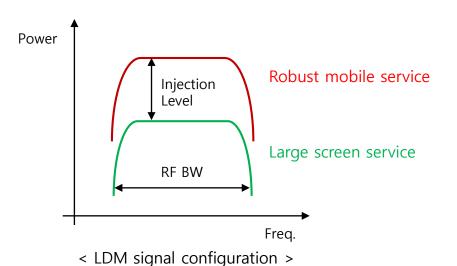


## Layered Division Multiplexing (LDM)







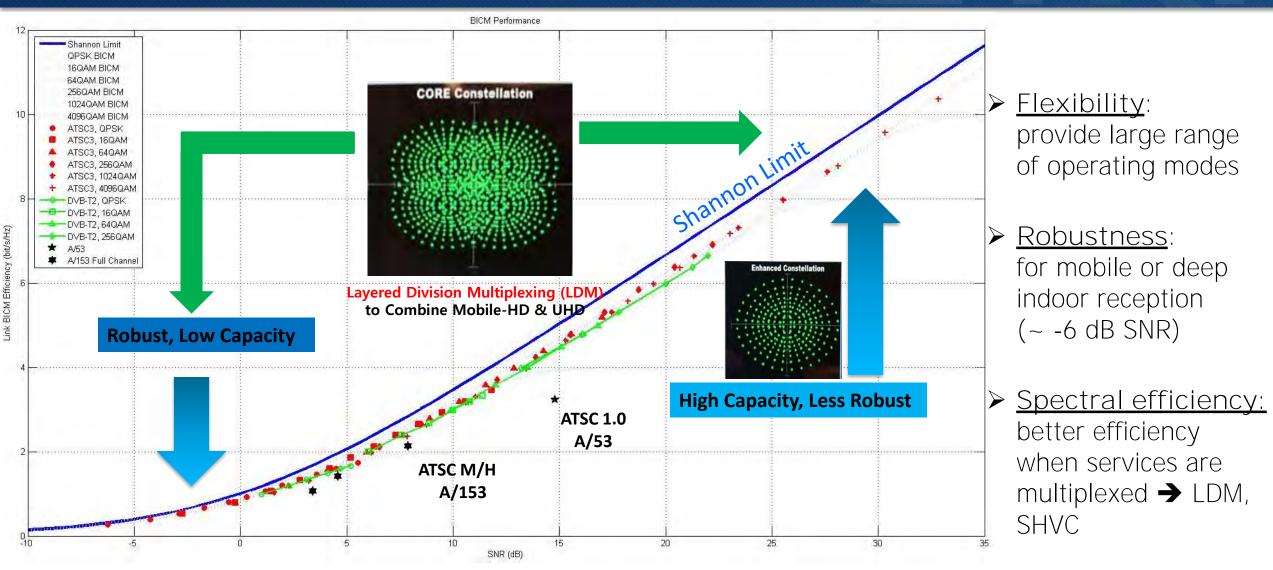

MASSILIFIED TO THE PARTY OF THE

LDM is like a double-decker bus, more capacity with the same foot print (bandwidth)





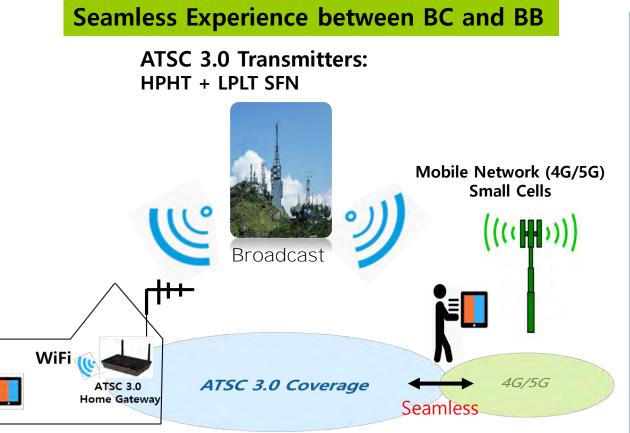
Possible for future extension!!

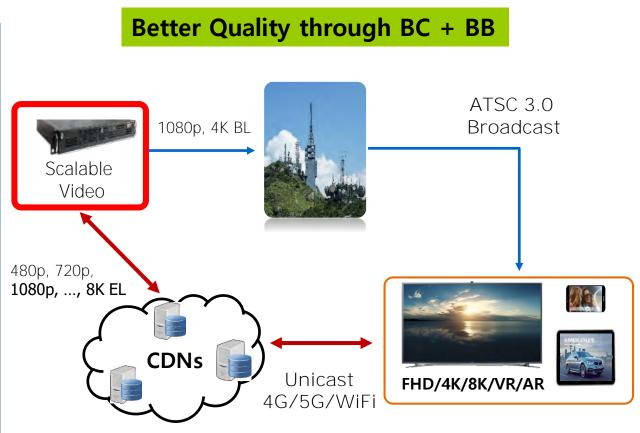



#### LDM key features

- Different services with different robustness are superimposed with different power
- 100% of RF bandwidth & 100% of time are fully used for both robust mobile service & large screen service
- LDM has significant performance gain (3 to 9 dB) over a traditional TDM/FDM schemes [ref]
- Commercialized ATSC 3.0 TVs support LDM technology




### **Shannon Capacity**






### ATSC 3.0 Broadcast Convergence with Broadband

ATSC 3.0 IP-Based Broadcast → feasible to cooperate/converge with Broadband (4G/5G/WiFi and others)





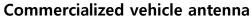
- ✓ ATSC 3.0 Broadcast (HPHT or HPHT/LPLT) takes dominant consumption of A/V traffic
  - ✓ Broadband can be supplemented (interactivity, hybrid, coverage extension) thru Unicast
- ✓ Seamless Experience & Better Quality → Viewers don't care about network technology and prefer low-cost (or free) network

#### Direct-to-Mobile in Korea

#### **Smart-phone demonstration**



- **DTM live demonstration** in South Korea on March 2022
  - Public and official demos driven by KBS
  - Technical support by ETRI and SBG
- Smartphone with built-in chipset on-board, "MarkONE"
  - Supervised by **SBG**, chipset manufactured by **Saankhya Labs**


#### **Commercialized vehicle receiver**













Commercialized vehicle receiver

Korea's major car manufacture will launch ATSC 3.0-ready vehicles in the US

and Korea in 2024.



### **Summary of the Benefits of ATSC 3.0**

#### 1. Convergence with Broadband

- ✓ ATSC 3.0 IP-based broadcast makes it possible to cooperate/converge with Broadband (4G/5G/Wi-Fi and others)
- ✓ 'Seamless Experience' & 'Better Quality' are the commercialized examples of BC/BB convergence

#### 2. BICM chain

- ✓ Well-designed and-optimized structure provides superior performance than any other DTT standard thanks to the superiority of the latest LDPC code and NUC.
- ✓ ATSC 3.0 is less than 1 dB away from Shannon Capacity in terms of BICM.

#### 3. Time interleaver

- ✓ Time diversity makes ATSC 3.0 have stable performance in various fast fading channels.
- ✓ Comparing FeMBMS not having time-interleaver, ATSC 3.0 has a 3 dB to 11 dB performance advantage depending on vehicle speeds.

#### 4. Flexibility in terms of numerology

- ✓ ATSC 3.0 provides excellent flexibility for selecting various combinations of guard interval, FFT size, and pilot patterns, depending on the geographical size of the broadcasting network and service requirements.
- ✓ However, in FeMBMS, guard interval, FFT size, and pilot pattern are fixed for given OFDM numerology.

#### Layered Division Multiplexing

- ✓ Unique & differentiated technology (world 1st commercialized non-orthogonal multiplexing technology, a.k.a NOMA in 3GPP)
- ✓ LDM provides significant performance gain (3 to 9 dB) over a traditional TDM/FDM schemes.

