## BROADCAST POSITIONING SYSTEM (BPS) TIME AND POSITION USING ATSC 3.0 SIGNALS









### **Timing Needs for U.S. Critical Infrastructure**







### Technical Requirements to Satisfy Critical Infrastructure Usability Needs

| Name of Industry         | Timing Requirements                                                |  |
|--------------------------|--------------------------------------------------------------------|--|
| Mobile Wireless Networks | <b>1.1 μsec</b> traceable to UTC                                   |  |
| Equity Trading Systems   | <b>1 µsec</b> within UTC NIST (SEC Section 613 rules, MifID II EU) |  |
| Power Grid               | 1 µsec to UTC, IEEE 37-238, (Synchro-phasors)                      |  |
| Other CI Industries      | 200 ns satisfies all requirements                                  |  |





### ATSC 3.0 Standard – Next Gen TV







## **Broadcast Positioning System (BPS)**



A system and method of estimating time and position at a receiver using ATSC 3.0 broadcast signals



Compliant with ATSC 3.0 standard; uses datacasting feature



### Independent and stand-alone

• GPS, Internet or cellular connectivity not required





## **Time Delivery**





### Pseudorange Multilateration Concept

Pseudorange equations:

$$r_{1} = \sqrt{(x_{1} - x)^{2} + (y_{1} - y)^{2}} + ct$$

$$r_{2} = \sqrt{(x_{2} - x)^{2} + (y_{2} - y)^{2}} + ct$$

$$r_{3} = \sqrt{(x_{3} - x)^{2} + (y_{3} - y)^{2}} + ct$$







# PNT Capabilities of BPS



One TV tower can provide accurate time at a known position

• 100 ns, 95% of the time

Four TV towers can provide both time and position estimation

70 m positioning accuracy 50% of the time

Can detect GPS spoofing

Can enable GPS-BPS hybrid location





### High Power with Frequency Diversity



516 VHF stations, up to 10 KW

1,526 stations, 100 - 1000 KW







### BPS (UHF & VHF) Coverage at Full Deployment

#### Coverage at 1.5 m antenna height:

At demodulation threshold (-5 dB SINR) Threshold + 10 dB Threshold + 20 dB

#### Average signal reception:

- 17 towers at 1.5 m antenna height
- 70 towers at 50m antenna height







### Typical Predicted BPS Coverage (50/50) of a TV Station

- WHUT-TV, Howard University
- 833 ft antenna height (HAAT)
- 416 kW ERP
- Channel 32, 587 MHz (center)







### **Advantages of BPS**







### 1<sup>st</sup> Gen Prototype Running at NAB 1M Lab





ATSC 3.0 Testbed at NAB 1M Lab



14

Operational BPS Prototype at NAB 1M Lab



14

### **Development Phases**



## References



Mondal, T., Weller, R., and Matheny, S., "Broadcast Positioning System (BPS) Using ATSC 3.0," *Proceedings of the 2021 NAB Broadcast Engineering and Information Technology (BEIT) Conference* 

<u>https://nabpilot.org/product/broadcast-positioning-system-bps-using-atsc-3-0-2/</u>

Diamond, P., Mondal, T., Weller, R., and Hansen, A., "Delivering Traceable Reference Time for ATSC 3.0-based Broadcast Positioning System (BPS)," *Proceedings of the 2023 NAB Broadcast Engineering and Information Technology* (*BEIT*) Conference

<u>https://nabpilot.org/product/delivering-traceable-reference-time-for-atsc-3-0-based-broadcast-positioning-system-bps/</u>

Corl, M., Anishchenko, V., and Mondal, T., "BPS ATSC 3.0 Broadcast Emission Time Stabilization System Proof-of-concept," *Proceedings of the 2023 NAB Broadcast Engineering and Information Technology (BEIT) Conference* 

<u>https://nabpilot.org/product/bps-atsc-3-0-broadcast-emission-time-stabilization-system-proof-of-concept/</u>



# IN-DEPTH BPS TECHNICAL PRESENTATION AND DEMO

Tariq Mondal, NAB Mark Corl, Triveni Digital Vlad Anishchenko, Avateq Corp





### ATSC 3.0 Physical Layer Frame







Source: ATSC Standard, Physical Layer Protocol, Doc. A/322:2020

### Preamble Timestamping Challenge







# Time Synchronization at the Transmitter













### **Reliable and Traceable Timing Source**







### Increasing Resiliency and Accuracy



Report timestamping errors of previous frames

Report emission time and location of neighboring stations

Nationwide self-synchronizing network

23





### Self-Synchronizing, Traceable Time Mesh Network







**Follower** 



Follower



Follower

Transmitter "Node"











Follower







### **BPS Information Data Structure**

Single data structure containing one or more fragments

- Each fragment contains a unique transmitter ID
- Fragments can be grouped and routed as appropriate Provides "GPS Almanac/Ephemeris" Functionality

### **Measurement Fragment**

- Neighbor Bootstrap Time Accuracy and Offset
- Previous Time and Error

#### **Timing Source Fragment**

- Position in Network
  Offset from Leader
- Expected Timing Source Accuracy
- Timing Source Used
- List of available Timing Sources

### **Description Fragment**

- Transmitter Description
  - Maximum Gain Direction
  - Position (Lat, Lon, Height)
  - Radiated Power
  - Antenna Field Pattern





# **Thank You**

# **Backup Slides**

## Multilateration Iterative Solution

$$\boldsymbol{\Delta x} = \begin{bmatrix} \Delta x \\ \Delta y \\ -c\Delta t \end{bmatrix} \qquad \boldsymbol{H} = \begin{bmatrix} \frac{(x_1 - \hat{x})}{\sqrt{(x_1 - \hat{x})^2 + (y_1 - \hat{y})^2}} & \frac{(y_1 - \hat{y})}{\sqrt{(x_1 - \hat{x})^2 + (y_1 - \hat{y})^2}} & 1 \\ \frac{(x_2 - \hat{x})}{\sqrt{(x_2 - \hat{x})^2 + (y_2 - \hat{y})^2}} & \frac{(y_2 - \hat{y})}{\sqrt{(x_2 - \hat{x})^2 + (y_2 - \hat{y})^2}} & 1 \\ \frac{(x - \hat{x})}{\sqrt{(x_3 - \hat{x})^2 + (y_3 - \hat{y})^2}} & \frac{(y - \hat{y})}{\sqrt{(x_3 - \hat{x})^2 + (y_3 - \hat{y})^2}} & 1 \end{bmatrix} \qquad \boldsymbol{\Delta r} = \begin{bmatrix} \Delta r_1 \\ \Delta r_2 \\ \Delta r_3 \end{bmatrix}$$

Least-square solution:  $\Delta x = (H^T H)^{-1} H^T \Delta r$ 

Weighted least-square 
$$\Delta x = (H^T W H)^{-1} H^T W \Delta r$$
  
solution:

where  $\boldsymbol{W} = \begin{bmatrix} w_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & w_n \end{bmatrix}$ 

# **Coverage Planning Factors**

| Parameter                  | BPS Value | TV Value | Unit       |
|----------------------------|-----------|----------|------------|
| System Bandwidth           | 6         | 6        | MHz        |
| Required C/(I+N)           | -5        | 15       | dB         |
| Thermal Noise (kTB)        | -106.2    | -106.2   | dBm        |
| Frequency of Operation     | 539       | 615      | MHz        |
| Antenna Gain               | 0         | 12.15    | dBi        |
| Antenna Factor             | -129.6    | -132.95  | dBm-dBµV/m |
| Noise Figure               | 6         | 7        | dB         |
| Line Loss                  | 0         | 4        | dB         |
| Required Field Strength    | 24.4      | 40.8     | dBµV/m     |
| Required Power at RX       | -109.05   | -84.85   | dBm        |
| RX Antenna height, AGL     | 1.5       | 10       | m          |
| Location, Time Variability | 50%, 50%  | 50%, 90% | _          |

# **Coverage Definition (Planning Factors)**

| Nominal Coverage Threshold, dBµV/m |    |            |  |  |
|------------------------------------|----|------------|--|--|
| Band                               | TV | <u>BPS</u> |  |  |
| VHF-L (54-88 MHz)                  | 28 | 6.6        |  |  |
| VHF-H (174-213 MHz)                | 36 | 15.6       |  |  |
| UHF (470-608 MHz)                  | 41 | 24.4       |  |  |