# Comparison of ATSC 3.0 and 5G Broadcast: Performance and Network Expense

### Dr. Sung-Ik Park, IEEE Fellow ETRI Project Leader (ATSC 3.0, FeMBMS, SFN, MATV, others) Distinguished Lecturer, IEEE BTS (Broadcasting Technology Society)

© 2023 ETRI. All Rights Reserved.

### Why ATSC 3.0 for Terrestrial Broadcast?

- ATSC 3.0 PHY is purpose-built for broadcast
- Superior over current 3GPP MBMS solutions for downlink broadcast/multicast
- Significant network expense (CAPEX and OPEX) savings
- Very compelling case to add to a future 3GPP release
- This presentation includes a performance comparison with 5G-Broadcast (3GP P Rel-16/17), a.k.a FeMBMS



### ATSC 3.0 Status in S. Korea

- ATSC 3.0 delivering 4K-UHD started in Seoul metro area (May 2017), extended to major cities (Dec. 2017), and will be nationwide by 2025
- New frequency bands in 700 MHz were assigned for ATSC 3.0 (Simulcasting: ~ 2027)



Successfully demonstrated high quality mobile broadcast + 4K-UHD in a single RF channel for 2018 Winter Olympics (PyeongChang)



ETR

ATSC 3.0 mobile receiver installed in a shuttle bus over Olympic village



Inside the bus introduced by WRAL-TV (U.S.)

### ATSC 3.0 Status in S. Korea

### **Enhanced TV**

#### **Mobility**









ETRI

# \$

Datacasting

**Navigation Updates** 



**Apps and Data** 



#### **Multimedia Files**

### Convergence





#### © 2023 ETRI. All Rights Reserved.

### ATSC 3.0 Status in S. Korea - Consumer Devices



In Korea, all Samsung and LG UHDTV (manufactured after 2017) are ATSC 3.0 ready!!





Others



- Dongle receiver for existing device
- Home gateway for WiFi re-distribution

# **MBMS: Broadcasting Services in 3GPP**

- Broadcasting technologies in cellular-based mobile broadband (3GPP)
  - Starting from LPLT-based point-to-point service
  - Extended to HPHT-based infrastructure for a larger coverage
- MBMS (Multimedia Broadcast and Multicast Service ) features
  - Possible to efficiently deliver the same contents (i.e., popular contents: live news and sports) to massive subscribers based Point-to-multipoint (P-to-MP) versus Unicast
  - Possible to deliver the same contents to wider coverage due to SFN



### MBMS: History from 3G to 5G



### **MBMS: 5G-Broadcast Trials**

### Significant interests to pilot 5G broadcast for digital TV delivery

#### Germany

2020-22: 5G Media2Go audiovisual service for autonomous vehicles with Rel-14/16 enTV in Stuttgart/Heilbronn

2017-20: Distribution of TV with Rel-14 enTV in Munich and Bavarian alpine region

#### United Kingdom

2018-19. Distribution of linear and nonlinear BBC radio using Rel-12/14 broadcast in rural Orkney Islands

#### Spain

2020: Distribution of free-to-air lineer radio and TV using Rel-14 enTV with HPHT in Barcelona

#### Colombia

2020-21: Delivery of TV and radio with Rel-14 broadcast trial deployment in Santiago de Tolú

#### Brazil

2020+: TV 3.0 project calling for proposals

#### Italy

2018: TV delivery with Rel-14 enTV using HPHT in Aosta during European Championship

2020, TV delivery to mobile devices with Rel-14/15 enTV using HPHT in Turin

#### Austria

2020-23: Distribution of TV and radio with Rei-14/16 enTV, also interplaying with eMBB in Vienna

#### India

2020+: Growing interest in latest broadcast<sup>4</sup> technologies

#### South Korea

Late 2021: Distribution of live TV using Ref-16 enTV near Secul

#### China

2019-20: NRTA<sup>1</sup> is cooperating with ABS<sup>2</sup> and CBN<sup>1</sup> to setup 5G Broadcest field trials in Beijing

2022: Targeting to commercially deploy 5G broadcast by Winter Olympics in Beijing, and broader national expansion planned afterwards

# **BICM (Bit-Interleaved Coded Modulation)**



# **BICM (Bit-Interleaved Coded Modulation)**

#### LDPC code vs Turbo code





[Performance: ATSC 3.0 LDPC codes vs other DTT standards]

- ATSC 3.0 LDPC codes outperform other wireless broadcasting/communication standards
- ATSC 3.0 LDPC codes are less than 1 dB away from Shannon Capacity

K.-J. Kim *et al.*, "Low-Density Parity-Check Codes for ATSC 3.0." in *IEEE Trans. on Broadcasting*, vol. 62, no. 1, pp. 189-196, March 2016.

S.-K. Ahn *et al.*, "Comparison of Low-Density Parity-Check Codes in ATSC 3.0 and 5G Standards." in *IEEE Trans. on Broadcasting*, vol. 65, no. 3, pp. 489-495, Sept. 2019.

# **BICM (Bit-Interleaved Coded Modulation)**

#### NUC vs QAM



<sup>[</sup>Performance: gain of ATSC 3.0 NUC over rectangular QAM]

- ATSC 3.0 NUCs outperform rectangular QAMs
- NUC gain increases when modulation order increases



© 2023 ETRI. All Rights Reserved.

[Shortfall of the BICM capacity from the Shannon capacity, NUC and QAM]<sup>[1]</sup>

Performance of BICM chain is bounded by its BICM capacity.

- NUC is closer to BICM capacity than rectangular QAM
- NUC gain increases when modulation order increases

# Performance Comparison over AWGN channel

#### Evaluation over AWGN channel

|                              | Required CNR (5Mbps) | Required CNR (10Mbps) | Required CNR (15Mbps) |
|------------------------------|----------------------|-----------------------|-----------------------|
| ATSC 3.0                     | 1.2dB                | 6.4dB                 | 10.4dB                |
| FeMBMS (Rel-16/17)           | 2.3dB                | 7.3dB                 | 12.1dB                |
| ATSC 3.0 gain<br>over FeMBMS | 1.1dB                | 0.9dB                 | 1.7dB                 |



ATSC 3.0 has a better BICM (bit-interleaved coded modulation) efficiency than FeMBMS. In the AWGN channel, ATSC 3.0's latest LDPC codes and NUC (non-uniform constellation) combination provides around 1 – 2 dB gain compared to turbo codes and rectangular QAM of FeMBMS.

In terms of BICM, ATSC 3.0 is less than 1 dB away

#### from Shannon Capacity.

ETRI

[AWGN channel]

## **Time Interleaver**

#### ATSC 3.0 w. Time Interleaver

ETR

ATSC 3.0 PHY is designed to provide uniform performance under harsh mobile fading channels.  $\rightarrow$  Time interleaver is an appropriate solution.



#### **Time Interleaver**

0.1

0.01

0.001

0.0001

10

CNR (dB [Fading Performance]

12

8

14 16

Time interleaver spreads burst errors, caused by harsh fading channel, to random errors so that a receiver can make it decode successfully.





Random errors -> Decoding success!

Burst errors → Decoding failure!

#### **FeMBMS w.o. Time Interleaver**

LTE PHY (FeMBMS) is designed to minimize latency for supporting latency requirements of unicast transmission.  $\rightarrow$  Time interleaver is not allowed in LTE PHY layer.



### **Time Interleaver**

3 -3km/h **—**40km/h 2.5 2 1.5 Channel amplitude 1 0.5 0 600 0 100 200 300 400 500 700 800 900 1000 1100 1200 Time (ms) Codeword **Random errors** → Decoding success! × × × × Decoding success! × Decoding success! ×××××× × × XX → Decoding failure! Time **Burst errors** interleaver

[Fading channel realization]



### Time Interleaver Effect over India-Urban channel

• Advantage for ATSC 3.0 compared to FeMBMS (Rel-16/17)



[5Mbps – From 3km/h to 200km/h]

ETRI

[10Mbps – From 3km/h to 200km/h]

[15Mbps – From 3km/h to 200km/h]

| Data rate / | ATSC 3.0 gain over FeMBMS (Rel-16/17) |        |        |        |         |         |                      |         |
|-------------|---------------------------------------|--------|--------|--------|---------|---------|----------------------|---------|
| Mobility    | 3km/h                                 | 30km/h | 40km/h | 50km/h | 60km/h  | 120km/h | 150km/h              | 200km/h |
| 5Mbps       | 3.0 dB                                | 7.1 dB | 7.5 dB | 8.2 dB | 8.3 dB  | 9.2 dB  | 9.7 dB               | 11.4 dB |
| 10Mbps      | 2.7 dB                                | 6.6 dB | 7.1 dB | 7.6 dB | 8.0 dB  | 10.7 dB | FeMBMS non-decodable |         |
| 15Mbps      | 3.5 dB                                | 7.7 dB | 8.4 dB | 9.5 dB | 10.4 dB | FeN     | FeMBMS non-decodable |         |

[HW-based Laboratory Test] ATSC 3.0 Subframe vs. 5G Broadcast PMCH -> 6MHz BW, 768MHz CF, India-Urban/TU-6 channel



[HW-based Laboratory Environment]

| Configuration<br>/ Mobility |                      | ATSC 3.0 gain over 5G Broadcast (Rel-16/17) |                                   |                                   |  |  |  |
|-----------------------------|----------------------|---------------------------------------------|-----------------------------------|-----------------------------------|--|--|--|
|                             |                      | 3.75 Mbps                                   | 7.5 Mbps                          | 11.25 Mbps                        |  |  |  |
| Urban                       | 3km/h                | 8.0 dB                                      | 5G Broadcast<br>non-<br>decodable | 5G Broadcast<br>non-<br>decodable |  |  |  |
| India-I                     | <b>40km/h</b> 9.8 dB |                                             | 9.5 dB                            | 5G Broadcast<br>non-<br>decodable |  |  |  |
| TU-6                        | 3km/h                | 4.5 dB                                      | 6.3 dB                            | 5G Broadcast<br>non-<br>decodable |  |  |  |
|                             | 40km/h               | 10.3 dB                                     | 9.7 dB                            | 5G Broadcast<br>non-<br>decodable |  |  |  |

[Performance Comparison between ATSC 3.0 and 5G Broadcast]

[HW-based Laboratory Test] ATSC 3.0 Subframe vs. 5G Broadcast PMCH -> 6MHz BW, 768MHz CF, AWGN/India-Urban/TU-6 channel

#### [AWGN] 16 5G Broadcast 14 3.6 dB 12 10 CNR [dB] 2,6 dB 6 4 2.0 dB 2 0 3.75 Mbps 7.2 Mbps 11.25 Mbps

#### [India-Urban/TU-6]

|                             | ATSC 3.0 gain over 5G Broadcast (Rel-16/17) |                               |                               |                               |  |  |  |
|-----------------------------|---------------------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|--|
| Configuration /<br>Mobility | India-                                      | Urban                         | TU-6                          |                               |  |  |  |
|                             | 3km/h                                       | 40km/h                        | 3km/h                         | 40km/h                        |  |  |  |
| 3.75 Mbps                   | 8.0 dB                                      | 9.8 dB                        | 4.5 dB                        | 10.3 dB                       |  |  |  |
| 7.5 Mbps                    | 5G Broadcast<br>non-decodable               | 9.5 dB                        | 6.3 dB                        | 9.7 dB                        |  |  |  |
| 11.25 Mbps                  | 5G Broadcast<br>non-decodable               | 5G Broadcast<br>non-decodable | 5G Broadcast<br>non-decodable | 5G Broadcast<br>non-decodable |  |  |  |

➤ Transmitter Facilities for ATSC 3.0 and 5G-MBMS Field Trial in 2022





< 5G MBMS and ATSC 3.0 Transmitter > Center Frequency : 768MHz (BW:6MHz) Transmission power : 100W



- ▶ Receiver (Test Vehicle) Facilities for ATSC 3.0 and 5G-MBMS Field Trial in 2022
  - For both fixed and mobile reception



Noise Signal Generator

| ATSC 3.0 6MHz is      |                            | is used (instead<br>of 8MHz) |                     | 5G-MBMS                        |       |                             |                 |                 |
|-----------------------|----------------------------|------------------------------|---------------------|--------------------------------|-------|-----------------------------|-----------------|-----------------|
|                       | Common Configuration       | (ATSC 3.0)                   |                     | Common Configuration (5G-MBMS) |       |                             |                 |                 |
| Center frequence      | Σ¥                         | 768 MHz                      |                     | Center frequency 768 MHz       |       | 768 MHz                     |                 |                 |
| Bandwidth             |                            | 6MHz Bandwidth               |                     | 6MHz (30RBs)                   |       |                             |                 |                 |
| Common                | FFT size                   | 8192 FFT size                |                     | 12288                          |       |                             |                 |                 |
| parameters            | Guard interval             | GI7_2048 (222.22 us)         | 2048 (222.22 us)    |                                | 200us |                             |                 |                 |
| Preamble              | Pilot Pattern              | ot Pattern SP_Dx = 3         |                     |                                |       |                             |                 |                 |
| parameters            | Signaling Protection       | L1-Basic/Detail mode 1       | Pilot pattern SP3_2 |                                |       |                             |                 |                 |
|                       | Pilot pattern              | SP3_2                        |                     | Subcarrier space               | ing   | 1.25KHz                     |                 |                 |
| Payload OFDM          | # of payload symbols       | 222                          |                     | MCS table                      |       | Table 7.1.7.1-1 (TS 36.213) |                 |                 |
| parameters            | Time interleaver           | CTI with a depth of 1024     |                     |                                |       | Max 64-QAM table            |                 |                 |
| Frequency interleaver |                            | On                           |                     |                                |       |                             |                 |                 |
| Frame length          |                            | 250.8889 ms                  |                     |                                | Confi | guration 1                  | Configuration 2 | Configuration 3 |
|                       |                            |                              |                     | MCS index                      | Conn  | 8                           | 14              | 20              |
|                       | Configuration 1 Configu    | uration 2 Configuration 3    |                     | TBS                            |       | 4264                        | 7736            | 11832           |
| Outer code 8          | 3/15-LDPC (64800) 8/15-LDI | PC (64800) 8/15-LDPC (64800) | )                   | Code rate                      |       | 0.58                        | 0.54            | 0.553           |

Constellation

Data rate

**QPSK** 

4.16 Mbps

16-QAM

7.54 Mbps

| Outer code    | 8/15-LDPC (64800) | 8/15-LDPC (64800)      | 8/15-LDPC (64800        |
|---------------|-------------------|------------------------|-------------------------|
| Constellation | QPSK              | 16-NUC                 | 64-NUC                  |
| Data rate     | 4.03 Mbps         | <mark>8.06 Mbps</mark> | <mark>12.09 Mbps</mark> |

ETRI

64-QAM

11.54 Mbps

[Field Test] ATSC 3.0 Subframe vs. 5G Broadcast PMCH -> 6MHz BW, 768MHz CF, 5Mbps



[Reception Success or Failure @ 5Mbps]

[ESR5 @ 5Mbps]



### **Network Cost Comparison**

- System eligibility Network cost
  - ✓ ATSC 3.0 and FeMBMS physical-layers are compared in terms of network cost.
  - ✓ Network expense (CAPEX & OPEX) can be abstracted in terms of the number of operational towers.



- Results for 10 Mbit/s presented here
- For Handheld indoor (ITU-R) the number of requited sites increase from 457 to 646 (40% increase) ATSC 3.0 vs FeMBMS
- For Handheld in Car reception the increase is about 150 % (266 to 669 sites)



[Theoretical Study: Bangalore, Results]

[Considered service area in Bangalore, India]

#### PROGIRA

#### These results are from Progira's network simulation

### **Network Cost Comparison**

- System eligibility Network cost
  - ✓ Given the target service area and QoS, ATSC 3.0 is more efficient solution in terms of network operation than FeMBMS.
    - For handheld indoor reception the FeMBMS (5G Broadcast) will require <u>40-60%</u> more sites
    - For mobile reception the increase in number of sites required for FeMBMS is <u>140-200%</u>. The reason for the large difference is lack of that time interleaving in 5G Broadcast Release <u>16/17</u>
    - In General <u>5 dB difference in</u> required C/N will double number of required sites!





[Theoretical Study: Considerations, Summary]

# Layered Division Multiplexing (LDM)



**Conventional transport vehicle:** single-decker bus.



LDM is like a double-decker bus, more capacity with the same foot print (bandwidth)



Possible for future extension!!



#### LDM key features

- Different services with different robustness are superimposed with different power
- 100% of RF bandwidth & 100% of time are fully used for both robust mobile service & large screen service
- LDM has significant performance gain (3 to 9 dB) over a traditional TDM/FDM schemes [ref]
- Commercialized ATSC 3.0 TVs support LDM technology

ETR

[ref#1] S-I. Park *et al.*, "Low Complexity Layered Division Multiplexing for ATSC 3.0," in *IEEE Trans. on Broadcasting*, vol. 62, no. 1, pp. 233-243, March 2016. [ref#2] S-I. Park *et al.*, "Field Comparison Tests of LDM and TDM in ATSC 3.0," in *IEEE Trans. on Broadcasting*, vol. 64, no. 3, pp. 637-647, Sept. 2018.

#### © 2023 ETRI. All Rights Reserved.

# **Shannon Capacity**





### **ATSC 3.0 Broadcast Convergence with Broadband**

• ATSC 3.0 IP-Based Broadcast → feasible to cooperate/converge with Broadband (4G/5G/WiFi and others)



- ✓ ATSC 3.0 Broadcast (HPHT or HPHT/LPLT) takes dominant consumption of A/V traffic
  - ✓ Broadband can be supplemented (interactivity, hybrid, coverage extension) thru Unicast
- ✓ Seamless Experience & Better Quality → Viewers don't care about network technology and prefer low-cost (or free) network

# **Direct-to-Mobile in Korea**

#### **Smart-phone demonstration**



- **DTM live demonstration** in South Korea on March 2022
  - Public and official demos driven by **KBS**
  - Technical support by ETRI and SBG
- Smartphone with built-in chipset on-board, "MarkONE"
  - Supervised by SBG, chipset manufactured by Saankhya Labs

#### **Commercialized vehicle receiver**







Commercialized vehicle antenna



**Commercialized vehicle receiver** 

Korea's major car manufacture will launch ATSC 3.0-ready vehicles in the US

# Summary of the Benefits of ATSC 3.0

#### 1. Convergence with Broadband

- ✓ ATSC 3.0 IP-based broadcast makes it possible to cooperate/converge with Broadband (4G/5G/Wi-Fi and others)
- ✓ 'Seamless Experience' & 'Better Quality' are the commercialized examples of BC/BB convergence

#### 2. BICM chain

- Well-designed and-optimized structure provides superior performance than any other DTT standard thanks to the superiority of the latest LDPC code and NUC.
- ✓ ATSC 3.0 is less than 1 dB away from Shannon Capacity in terms of BICM.

#### 3. Time interleaver

- ✓ Time diversity makes ATSC 3.0 have stable performance in various fast fading channels.
- Comparing FeMBMS not having time-interleaver, ATSC 3.0 has a 3 dB to 11 dB performance advantage depending on vehicle speeds.

#### 4. Flexibility in terms of numerology

- ATSC 3.0 provides excellent flexibility for selecting various combinations of guard interval, FFT size, and pilot patterns, depending on the geographical size of the broadcasting network and service requirements.
- However, in FeMBMS, guard interval, FFT size, and pilot pattern are fixed for given OFDM numerology.

#### 5. Layered Division Multiplexing

- Unique & differentiated technology (world 1<sup>st</sup> commercialized non-orthogonal multiplexing technology, a.k.a NOMA in 3GPP)
- LDM provides significant performance gain (3 to 9 dB) over a traditional TDM/FDM schemes.